
ALIAS: Scalable, Decentralized Label Assignment
for Data Centers

Meg Walraed-Sullivan
UC San Diego

mwalraed@cs.ucsd.edu

Radhika Niranjan Mysore
UC San Diego

radhika@cs.ucsd.edu

Malveeka Tewari
UC San Diego

mtewari@ucsd.edu
Ying Zhang

Ericsson Research
ying.zhang@ericsson.com

Keith Marzullo
UC San Diego

marzullo@cs.ucsd.edu

Amin Vahdat
UC San Diego

vahdat@cs.ucsd.edu

ABSTRACT
Modern data centers can consist of hundreds of thousands
of servers and millions of virtualized end hosts. Managing
address assignment while simultaneously enabling scalable
communication is a challenge in such an environment. We
present ALIAS, an addressing and communication protocol
that automates topology discovery and address assignment
for the hierarchical topologies that underlie many data cen-
ter network fabrics. Addresses assigned by ALIAS interop-
erate with a variety of scalable communication techniques.
ALIAS is fully decentralized, scales to large network sizes,
and dynamically recovers from arbitrary failures, without
requiring modifications to hosts or to commodity switch
hardware. We demonstrate through simulation that ALIAS
quickly and correctly configures networks that support up
to hundreds of thousands of hosts, even in the face of fail-
ures and erroneous cabling, and we show that ALIAS is a
practical solution for auto-configuration with our NetFPGA
testbed implementation.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network Com-
munications; C.2.2 [Computer-Communication Networks]:
Network Protocols

General Terms
Algorithms, Design, Management, Performance, Reliability

Keywords
Data Center Address Assignment, Hierarchical Labeling

1. ALIAS
The goal of ALIAS is to automatically assign globally unique,
topologically meaningful host labels that the network can

SOCC’11, October 27–28, 2011, Cascais, Portugal.

internally employ for efficient forwarding. We aim to de-
liver one of the key benefits of IP addressing—hierarchical
address assignments such that hosts with the same prefix
share the same path through the network and a single for-
warding table entry suffices to reach all such hosts—without
requiring manual address assignment and subnet configura-
tion. A requirement in achieving this goal is that ALIAS be
entirely decentralized and broadcast-free. At a high level,
ALIAS switches automatically locate clusters of good switch
connectivity within network topologies and assign a shared,
non-conflicting prefix to all hosts below such pockets. The
resulting hierarchically aggregatable labels result in compact
switch forwarding entries.1 Labels are simply a reflection of
current topology; ALIAS updates and reassigns labels to af-
fected hosts based on topology dynamics.

1.1 Environment
ALIAS overlays a logical hierarchy on its input topology.
In this logical hierarchy, switches are partitioned into levels
and each switch belongs to exactly one level. Switches con-
nect predominantly to switches in the levels directly above
or below them, though pairs of switches at the same level
(peers) may connect to each other via peer links.

One high-level dichotomy in multi-computer interconnects
is that of direct versus indirect topologies [19]. In a direct
topology, a host can connect to any switch in the network.
With indirect topologies, only a subset of the switches con-
nect directly to hosts; communication between hosts con-
nected to different switches is facilitated by one or more
intermediate switch levels. We focus on indirect topologies
because such topologies appear more amenable to automatic
configuration and because they make up the vast majority
of topologies currently deployed in the data center [1, 11,
14, 3, 6]. Figure 1(a) gives an example of an indirect 3-level
topology, on which ALIAS has overlaid a logical hierarchy.
In the Figure, Sx and Hx refer to unique IDs of switches
and hosts, respectively.

A host with multiple network interfaces may connect to mul-
tiple switches, and will have separate ALIAS labels for each
interface. ALIAS also assumes that hosts do not play a
switching role in the network and that switches are pro-
grammable (or run software such as OpenFlow [2]).

1We use the terms “label” and “address” interchangeably.

S8	
L3	

S4	
L2	
7	

S5	
L2	
1	

S1	
L1	
5,5	

S2	
L1	
3,2	

S6	
L2	
1	

S3	
L1	
7	

S10	
L2	
3	

S11	
L2	
3	

S13	
L1	
1	

S14	
L1	
7	

S12	
L2	
3	

S15	
L1	
2	

S9	
L3	

S7	
L3	

H3	
1.7	

H2	
7.3	
1.2	

H5	
3.7	

H4	
3.1	

H1	
7.5	
1.5	

H6	
3.2	

(a) Sample Topology

S8	
L3	

S4	
L2	
7	

S5	
L2	
1	

S1	
L1	
5,5	

S2	
L1	
3,2	

S6	
L2	
1	

S3	
L1	
7	

S10	
L2	
3	

S11	
L2	
3	

S13	
L1	
1	

S14	
L1	
7	

S12	
L2	
3	

S15	
L1	
2	

S9	
L3	

S7	
L3	

H3	
1.7	

H2	
7.3	
1.2	

H5	
3.7	

H4	
3.1	

H1	
7.5	
1.5	

H6	
3.2	

(b) Sample Level and Label Assignment

Figure 1: Level and Label Assignment for Sample Topology

1.2 Protocol Overview
ALIAS first assigns topologically meaningful labels to hosts,
and then enables communication over these labels. As with
IP subnetting, topologically nearby hosts share a common
prefix in their labels. In general, longer shared prefixes cor-
respond to closer hosts. ALIAS groups hosts into related
clusters by automatically locating pockets of strong connec-
tivity in the hierarchy—groups of switches separated by one
level in the hierarchy with full bipartite connectivity between
them. However, even assigning a common prefix to all hosts
connected to the same leaf switch can reduce the number of
required forwarding table entries by a large factor (e.g., the
number of host facing switch ports multiplied by the typical
number of virtual machines on each host).

1.2.1 Hierarchical Label Assignment
ALIAS labels are of the form (cn−1...c1.H.VM); the first
n− 1 fields encode a host’s location within an n-level topol-
ogy, the H field identifies the port to which each host con-
nects on its local switch, and the VM field provides support
for multiple VMs multiplexed onto a single physical ma-
chine. ALIAS assigns these hierarchically meaningful labels
by locating clusters of high connectivity and assigning to
each cluster (and its member switches) a coordinate. Coor-
dinates then combine to form host labels; the concatenation
of switches’ coordinates along a path from the core of the
hierarchy to a host make up the ci fields of a host’s label.

Prior to selecting coordinates, switches first discover their
levels within the hierarchy, as well as those of their neigh-
bors. Switches i hops from the nearest host are in level Li,
as indicated by the L1, L2, and L3 labels in Figure 1(b).

Once a switch establishes its level, it begins to participate
in coordinate assignment. ALIAS first assigns unique H-

coordinates to all hosts connected to the same L1 switch,
creating multiple one-level trees with an L1 switch at the
root and hosts as leaves. Next, ALIAS locates sets of L2

switches connected via full bipartite graphs to sets of L1

switches, and groups each such set of L2 switches into a
hypernode (HN). The intuition behind HNs is that all L2

switches in an L2HN can reach the same set of L1 switches,

and therefore these L2 switches can all share the same pre-
fix. This process continues up the hierarchy, grouping Li

switches into LiHNs based on bipartite connections to Li−1HNs.

Finally, ALIAS assigns unique coordinates to switches, where
a coordinate is a number shared by all switches in an HN
and unique across all other HNs at the same level. By shar-
ing coordinates between HN members, ALIAS leverages the
hierarchy present in the topology and reduces the number
of coordinates used overall, thus collapsing forwarding table
entries. Switches at the core of the hierarchy do not require
coordinates and are not grouped into HNs (see Section 2.4
for more details). L1 switches select coordinates without
being grouped into HNs. Further, we employ an optimiza-
tion (Section 2.2) that assigns multiple coordinates to an Li

switch, one per neighboring Li+1HN.

When the physical topology changes due to switch, host,
or link failure, configuration changes, or any other circum-
stances, ALIAS adjusts all label assignments and forwarding
entries as necessary (Sections 2.3 and 3.3).

Figure 1(b) shows a possible set of coordinate assignments
and the resulting host label assignments for the topology
of Figure 1(a); only topology-related prefixes are shown for
host labels. For this 3-level topology, L2 switches are grouped
in HNs (as shown with dotted lines), and L1 switches have
multiple coordinates corresponding to multiple neighboring
L2HNs. Hosts have multiple labels corresponding to the
L2HNs connected to their ingress L1 switches.

1.2.2 Communication
ALIAS’s labels can be used in a variety of routing and for-
warding contexts, such as tunneling, IP-encapsulation, or
MAC address rewriting [13]. We have implemented one such
communication technique (based on MAC address rewriting)
and present an example of this communication below.

An ALIAS packet’s traversal through the topology is con-
trolled by a combination of forwarding (Section 3.2) and
addressing logic (Section 2.2) Consider the topology shown
in Figure 1(b). A packet sent from H4 to H2 must flow up-

ward to one of S7, S8, or S9, and then downward towards its
destination. First, H4 sends an ARP to its first-hop switch,
S13, for H2’s label (Section 3.3). S13 determines this label
(with cooperation from nearby switches if necessary) and re-
sponds to H4. H4 can then forward its packet to S13 with
the appropriate label for H2, for example (1.2.1.0) if H2 is
connected to port 1 of S2 and has VM coordinate 0. At this
point, forwarding logic moves the packet to one of S7, S8,
or S9, all of which have a downward path to H2; the rout-
ing protocol (Section 3.1) creates the proper forwarding en-
tries at switches between H4 and the core of the network, so
that the packet can move towards an appropriate L3 switch.
Next, the packet is forwarded to one of S5 or S6, based on
the (1.x.x.x) prefix of H2’s label. Finally, based on the
second field of H2’s label, the packet moves to S2 where it
can be delivered to its destination.

1.3 Multi-Path Support
Multi-rooted trees provide multiple paths between host pairs,
and routing and forwarding protocols should discover and
utilize these multiple paths for good performance and fault
tolerance. ALIAS provides multi-path support for a given
destination label via its forwarding component (Section 3.2).
For example, in Figure 1(b), a packet sent from H4 to H2

with destination label (1.2.1.0) may traverse one of five
different paths.

An interesting aspect of ALIAS is that it enables a second
class of multi-path support: hosts may have multiple la-
bels, where each label corresponds to a set of paths to a
host. Thus, choosing a label corresponds to selecting a set
of paths to a host. For example, in Figure 1(b), H2 has two
labels. Label (1.2.1.0) encodes 5 paths from H4 to H2,
and label (7.3.1.0) encodes a single H4-to-H2 path. These
two classes of multi-path support help limit the effects of
topology changes and failures. In practice, common data
center fabric topologies will result in hosts with few labels,
where each label encodes many paths. Policy for choosing a
label for a given destination is a separable issue; we present
some potential methods in Section 3.3.

2. PROTOCOL
ALIAS is comprised of two components, Level Assignment
and Coordinate Assignment. These components operate
continuously, acting whenever topology conditions change.
For example, a change to a switch’s level may trigger changes
to that switch’s and its neighbors’ coordinates. ALIAS also
involves a Communication component (for routing, forward-
ing, and label resolution and invalidation); in Section 3 we
present one of the many possible communication compo-
nents that might use the labels assigned by ALIAS.

ALIAS operates based on the periodic exchange of Topol-
ogy View Messages (TVMs) between switches. In an n-level
topology, individual computations rely on information from
no more than n− 1 hops away.

Listing 1 gives an overview of the general state stored at
each switch, as well as that related to level assignment. A
switch knows its unique ID and the IDs and types (hosts or
switches) of each of its neighbors (lines 1-3.) Switches also
know their own levels as well as those of their neighbors,
and the types of links (regular or peer) connecting them to

Listing 1: ALIAS local state

1 UID myId
2 UIDSet nbrs
3 Map(UID→NodeType) types

4 Level level
5 Map(UID→Level) levels
6 Map(UID→LinkType) link types

each neighbor (lines 4-6); these values are set by the level
assignment protocol (Section 2.1).

2.1 Level Assignment
ALIAS level assignment enables each switch to determine
its own level as well as those of its neighbors and to detect
and mark peer links for special consideration by other com-
ponents. ALIAS defines an Li switch to be a switch with a
minimum of i hops to the nearest host. For convenience, in
an n-level topology, Ln switches may be referred to as cores.
Regular links connect L1 switches to hosts, and Li switches
to switches at Li±1, while peer links connect switches of the
same level.

Level assignment is bootstrapped by L1 switch identification
as follows: In addition to sending TVMs, each switch also
periodically sends IP pings to all neighbors that it does not
know to be switches. Hosts reply to pings but do not send
TVMs, enabling switches to detect neighboring hosts. This
allows L1 identification to proceed without host modifica-
tion. If hosts provided self-identification, then the protocol
becomes much simpler. Recent trends toward virtualization
in the data center with a trusted hypervisor may take on
this functionality.

When a switch receives a ping reply from a host, it immedi-
ately knows that it is at L1 and that the sending neighbor is
a host, and updates its state accordingly (lines 3-4, Listing
1). If a ping reply causes the switch to change its current
level, it may need to mark some of its links to neighbors
as peer links (line 6). For instance, if the switch previously
believed itself to be at L2, it must have done so because of
a neighboring L1 switch and its connection to that neighbor
is now a peer link.

Based on L1 identification, level assignment operates via a
wave of information from the lowest level of the hierarchy
upwards; A switch that receives a TVM from an L1 switch
labels itself as L2 if it has not already labeled itself as L1,
and this process continues up the hierarchy. More generally,
each switch labels itself as Li, where i − 1 is the minimum
level of all of its neighbors.

On receipt of a TVM, a switch determines whether the
source’s level is smaller than that recorded for any of its
others neighbors, and if so, adjusts its own level assignment
(line 4, Listing 1). It also updates its state for its neighbor’s
level and type if necessary (lines 3,5). If its level or that
of its neighbor has changed, it detects any changes to the
link types for its neighbors and updates its state accordingly
(line 6). For instance, if an L3 switch moves to L2, links to
L2 neighbors become peer links.

The presence of unexpected or numerous peer links may in-
dicate a miswiring, or erroneous cabling, with respect to the
intended topology. If ALIAS suspects a miswiring, it raises
an alert (e.g., by notifying the administrator) but continues
to operate. In this way, miswirings do not bring the system
to a halt, but are also not ignored.

ALIAS’s level assignment can assign levels to all switches as
long as at least one host is present. Once a switch learns its
level, it participates in coordinate assignment.

2.2 Label Assignment
An ALIAS switch’s label is the concatenation of n− 1 coor-
dinates, cn−1cn−2...c2c1, each corresponding to one switch
along a path from a core switch to the labeled switch. A
host’s label is then the concatenation of an ingress L1 switch’s
label and its own H and VM coordinates. As there may be
multiple paths from the core switches of the topology to a
switch (host), switches (hosts) may have multiple labels.

2.2.1 Coordinate Aggregation
Since highly connected data center networks tend to have
numerous paths to each host, per-path labeling can lead to
overwhelming numbers of host labels. ALIAS creates com-
pact forwarding tables by dynamically identifying sets of Li

switches that are strongly connected to sets of L1−i switches
below. It then assigns to these Li hypernodes unique Li co-
ordinates. By sharing one coordinate among the members
of an LiHN, ALIAS allows hosts below this HN to share a
common label prefix, thus reducing forwarding table entries.

An LiHN is defined as a maximal set of Li switches that all
connect to an identical set of Li−1HNs, via any constituent
members of the Li−1HNs. Each Li switch is a member of
exactly one LiHN. L2HN grouping are based on L1 switches
rather than HNs. In Figure 2, L2 switches S5 and S6 con-
nect to same set of L1 switches, namely {S1, S2, S3}, and
are grouped together into an L2HN, whereas S4 connects to
{S1, S2}, and therefore forms its own L2HN. Similarly, S7

and S8 connect to both L2HNs (though via different con-
stituent members) and form one L3HN while S9 forms a
second L3HN, as it connects only to one L2HN below.

S8	
L3	

S4	
L2	

S5	
L2	

S1	
L1	

S2	
L1	

S6	
L2	

S3	
L1	

S9	
L3	

S7	
L3	

S10	
L4	

Figure 2: ALIAS Hypernodes

Since LiHNs are defined based on connectivity to identical

sets of Li−1HNs, the members of an LiHN are interchange-
able with respect to downward forwarding. This is the key
intuition that allows HN members to share a coordinate,
ultimately leading to smaller forwarding tables.

ALIAS employs an optimization with respect to HN group-
ing for coordinate assignment. Consider switch S1 of Figure
2, and suppose the L2HNs {S4} and {S5, S6} have coordi-
nates x and y, respectively. Then S1 has labels of the form
...xc1 and ...yc1, where c1 is S1’s coordinate. Since S1 is con-
nected to both L2HNs, it needs to ensure that c1 is unique
from the coordinates of all other L1 switches neighboring
{S4} and {S5, S6} (in this example, all other L1 switches).

It is helpful to limit the sets of switches competing for co-
ordinates, to decrease the probability of collisions (two HNs
selecting the same coordinate) and to allow for a smaller
coordinate domain. We accomplish this as follows: S1 has
two coordinates, one corresponding to each of its label pre-
fixes, giving it labels of the form ...xc1 and ...yc2. In this
way S1 competes only with S2 for labels corresponding to
HN {S4}. In fact, ALIAS assigns to each switch a coor-
dinate per upper neighboring HN . This reduces coordinate
contention without increasing the coordinate domain size.

2.2.2 Decider/Chooser Abstraction
The goal of coordinate assignment in ALIAS is to select co-
ordinates for each switch such that these coordinates can
be combined into forwarding prefixes. By assigning per-
HN rather than per-switch coordinates, ALIAS leverages
a topology’s inherent hierarchy and allows nearby hosts to
share forwarding prefixes. In order for an Li switch to dif-
ferentiate between two lower-level HNs, for forwarding pur-
poses, these two HNs must have different coordinates. Thus,
the problem of coordinate assignment in ALIAS is to enable
LiHNs to cooperatively select coordinates that do not con-
flict with those of other LiHNs that have overlapping Li+1

neighbors. Since the members of an HN are typically not di-
rectly connected to one another, this task requires indirect
coordination.

To explain ALIAS’s coordinate assignment protocol, we be-
gin with a simplified Decider/Chooser Abstraction (DCA),
and refine the abstraction to solve the more complicated
problem of coordinate assignment. The basic DCA includes
a set of choosers that select random values from a given
space, and a set of deciders that ensure uniqueness among
the choosers’ selections. A requirement of DCA is that any
two choosers that connect to the same decider select distinct
values. Choosers make choices and send these requests to
all connected deciders. Upon receipt of a request from a
chooser, a decider determines whether it has already stored
the value for another chooser. If not, it stores the value
for the requester and sends an acknowledgment. If it has
already stored the requested value for another chooser, the
decider compiles a list of hints of already selected values and
sends this list with its rejection to the chooser. A chooser
reselects its value if it receives a rejection from any decider,
and considers its choice stable once it receives acknowledg-
ments from all connected deciders.

We employ DCA within a single LiHN and its Li−1 neigh-
bors to assign coordinates to the Li−1 switches, as in Figure

S5	
L2	

S1	
L1	 	
5	

S2	
L1	
2	

S6	
L2	

S3	
L1	
7	

Choosers	

Deciders	

(a) Basic Decider/Chooser

C{S4}=5	
C{S5,S6}=5	

S4	
L2	

S5	
L2	

S1	
L1	

S2	
L1	

S6	
L2	

S3	
L1	

Choosers	

Deciders	 Deciders	

C{S4}=3	
C{S5,S6}=2	 C{S5,S6}	 =7	

(b) Multiple Hypernodes

S8	
L3	

S4	
L2	
7	

S5	
L2	
1	

S1	
L1	

S2	
L1	

S6	
L2	
1	

S3	
L1	

S9	
L3	

S7	
L3	

0	

2

0	

0	

1	

1	

1	

2	

(c) Distributed Chooser

Figure 3: Level and Label Assignment for Sample Topology

3(a). The members of L2HN {S5, S6} act as deciders for L1

choosers, S1, S2, and S3, ensuring that the three choosers
select unique L1 coordinates.

Recall that as an optimization, ALIAS assigns to each switch
multiple coordinates, one per neighboring higher level HN.
We extend the basic DCA to have switches keep track of the
HN membership of upward neighbors, and to store coordi-
nates (and an indication of whether a choice is stable) on a
per-HN basis. This is shown in Figure 3(b), where each L1

switch stores information for all neighboring L2HNs. The
figure includes two instances of DCA, that from Figure 3(a)
and that in which S4 is a decider for choosers S1 and S2.

Finally, we refine DCA to support coordinate sharing within
an HN. Since each member of an HN may connect to a differ-
ent set of higher level switches (deciders), it is necessary that
all HN members cooperate to form a distributed chooser.
HN members cooperate with the help of a deterministically
selected representative L1 switch (for example, the L1 switch
with the lowest MAC address of those connected to the HN).
L1 switches determine whether they represent a particular
HN as a part of HN grouping calculations.

The members of an LiHN, and the HN’s representative L1

switch collaborate to select a shared coordinate for all HN
members as follows: The representative L1 switch performs
all calculations and makes all decisions for the chooser, and
uses the HN’s Li switches as virtual channels to the deciders.
LiHN members gather and combine hints from L3 deciders
above, passing them down to the representative L1 switch for
calculations. The basic chooser protocol introduced above
is extended to support reliable communication over the vir-
tual channels between the representative L1 switch and the
HN’s Li switches. Additionally, for the distributed version
of DCA, deciders maintain state about the HN membership
of their L2 neighbors in order to avoid falsely detecting con-
flicts; a decider may be connected to a single chooser via
multiple virtual channels (L2 switches) and should not per-
ceive identical requests across such channels as conflicts.

Figure 3(c) shows two distributed choosers in our example
topology. Choosers {S1, S4} and {S1, S5, S6} are shaded in
light and dark grey, respectively. Note that S7 is a decider

for both choosers while S8 and S9 are deciders only for the
second chooser. S2 and S3 play no part in L2 coordinate
selection for this topology.

Our implementation does not separate each level’s coordi-
nate assignment into its own instance of the extended DCA
protocol; rather, all information pertaining to both level
and coordinate assignment is contained in a single TVM.
For instance, in a 5-level topology, a TVM from an L3

switch to an L2 switch might contain hints for L2 coordi-
nates, L3HN grouping information, and L4 information on
its way down to a representative L1 switch. Full details of
the Decider/Chooser Abstraction, a protocol derivation for
its refinements, and a proof of correctness are available in a
separate technical report [22].

Label assignment converges when all L2 through Ln−1 switches
have grouped themselves into hypernodes, and all L1 through
Ln−1 switches have selected coordinates.

2.2.3 Example Assignments
Figure 4 depicts the TVMs sent to assign coordinates to
the L2 switches in Figure 3’s topology. For clarity, we show
TVMs only for a subset of the switches. In TVM 1, all core
switches disallow the selection of L2-coordinate 3, due to its
use in another HN (not shown). L2 switches incorporate this
restriction into their outgoing TVMs, including their sets of
connected L1 switches (TVMs 2a and 2b). S1 is the repre-
sentative L1 switch for both HNs, as it has the lowest ID. S1

selects coordinates for the HNs and informs neighboring L2

switches of their HNs and coordinates (TVMs 3a and 3b.)

2.3 Relabeling
Since ALIAS labels encode paths to hosts, topology changes
may affect switch coordinates and hence host labels. For in-
stance, when the set of L1 switches reachable by a particular
L2 switch changes, the L2 switch may have to select a new
L2-coordinate. This process is coined Relabeling.

Consider the example shown in Figure 5 where the high-
lighted link between S5 and S3 fails. At this point, af-
fected switches must adjust their coordinates. With TVM
1, S5 informs its L1 neighbors of its new connection status.
Since S1 knows the L1 neighbors of each of its neighbor-

S1	
L1	

S2	
L1	

S3	
L1	

S8	
L3	

S9	
L3	

S7	
L3	 1 1

1 1 1

2b 2b 2a

2b
S4	
L2	

S5	
L2	

S6	
L2	

3b

2b 2b

2b

3a
3b

Time TVM

1 L2 hints{3}

2a
dwn nbrs{S1,S2}

L2 hints{3}

2b
dwn nbrs{S1,S2,S3}

L2 hints{3}

3a
HN {S5,S6}

L2 coordinate: 1

3a
HN {S4}

L2 coordinate: 7

Figure 4: Label Assignment: L2-coordinates

ing L2 switches, it knows that it remains the representative
L1 switch for both HNs. S1 informs S4 and S5 of the HN
membership changes in TVM 2a, and informs S6 of S4’s de-
parture in TVMs 2b. Since S5 simply left one HN and joined
another, existing HN, host labels are not affected.

S7	
L3	

S4	
L2	
7	

S5	
L2	
	 1	 7	

S1	
L1	

S2	
L1	

S6	
L2	
1	

S3	
L1	

1

1

2a

2b

H3	

1.7	

H2	

7.3	
1.2	

H1	

7.5	
1.5	

S8	
L3	

S9	
L3	

2a

Time TVM

1
dwn nbrs{S1,S2}

L2 hints{3}

2a
HN {S4,S5}

L2 coordinate: 7

2b
HN {S6}

L2 coordinate: 1

Figure 5: Relabeling Example

The effects of relabeling (whether caused by link addition
or deletion) are determined solely by changes to the HN
membership of the upper level switch incident on the af-
fected link. Table 1 shows the effects of relabeling after a
change to a link between an L2 switch `2 and an L1 switch
`1, in a 3-level topology. Case 1 corresponds with the ex-
ample of Figure 5; `2 moves from one HN to another. In
this case, no labels are created nor destroyed. In case 2,
one HN splits into two and all L1 switches neighboring `2
add a new label to their sets of labels. In case 3, two HNs
merge into a single HN, and with the exception of `1, all L1

switches neighboring `2 lose one of their labels. Finally, case
4 represents a situation in which an HN simply changes its
coordinate, causing all neighboring L1 switches to replace
the corresponding label.

Changes due to relabeling are completely encapsulated in
the forwarding information propagated, as described in Sec-
tion 3.2. Additionally, in Section 3.3 we present an optimiza-
tion that limits the effects of relabeling on ongoing sessions
between pairs of hosts.

Case
Old New Single Remaining
HN HN L1 switch L1 switches

1 Intact Existing None None
2 Intact New + 1 label + 1 label
3 Removed Existing None - 1 label
4 Removed New Swap label Swap label

Table 1: Relabeling Cases

2.4 M-graphs
There are some rare situations in which ALIAS provides
connectivity between switches from the point of view of the
communication component, but not from that of coordinate
assignment. The presence of an M-graph in a topology can
lead to this problem, as can the use of peer links. We con-
sider M-graphs below and discuss peer links in Section 3.4.

S8	
L3	

S4	
L2	 	
3	

S5	
L2	 	
2	

S1	
L1	 	
1	

S2	
L1	 	
2	

S6	
L2	 	
2	

S3	
L1	 	
1	

S9	
L3	

H3	

3.1	
H2	

2.2	
H1	

3.1	

S7	
L2	 	
3	

Figure 6: Example M-graph

ALIAS relies on shared core switch parents to enforce the
restriction that pairs of Ln−1HNs do not select identical
coordinates. There are topologies, though, in which two
Ln−1HNs do not share a core and could therefore select
identical coordinates. Such an M-graph is shown in Fig-
ure 6. In the example, there are 3 L2HNs, {S4}, {S5, S6},
and {S7}. It is possible that S4 and S7 select the same L2-
coordinate, e.g., 3, as they do not share a neighboring core.
Since {S5, S6} shares a parent with each of the other HNs,
its coordinate is unique from those of S4 and S7. L1 switches
S1 and S3 are free to choose the same L1-coordinates, 1 in
this example. As a result, two hosts H1 and H3 are legally
assigned identical ALIAS labels, (3.1.4.0), if both H1 and
H3 are connected to their L1 switches on the same numbered
port (in this case, 4), and have VM coordinate 0.

H2 can now see two non unique ALIAS labels, which in-
troduces a routing ambiguity. If H2 attempts to forward a
packet to H1, it will use the label (3.1.4.0). When S2 re-
ceives the packet, S2 can send this packet either to S5 or S6,
since it thinks it is connected to an L2HN with coordinate
3 via both. The packet could be transmitted to the unin-
tended destination H3 via S6, S9, S7, S3. When the packet
reaches S3, S3 is in a position to verify whether the packet’s
IP address matches H3’s ALIAS label, by referencing a flow
table entry that holds IP address-to-ALIAS label mappings.
(Note that such flow table entries are already present for
the communication component, as in Section 3.3.) A packet

destined to H1’s IP address would not match such a flow
entry and would be punted to switch software.2

Because we expect M-graphs to occur infrequently in well-
connected data center environments, our implementation fa-
vors a simple “detect and resolve” technique. In our exam-
ple, S3 receives the mis-routed packet and knows that it is
part of an M-graph. At this point S3 sends a directive to
S7 to choose a new L2-coordinate. This will result in dif-
ferent ALIAS labels for H1 and H3. Once the relabeling
decision propagates via routing updates, S2 correctly routes
H1’s packets via S5. The convergence time of this relabeling
equals the convergence period for our routing protocol, or 3
TVM periods.3

In our simulations we encounter M-graphs only for input
topologies with extremely poor connectivity, or when we ar-
tificially reduce the size of the coordinate domain to cause
collisions. If M-graphs are not tolerable for a particular net-
work, they can be prevented in two ways, each with an ad-
ditional application of the DCA abstraction. With the first
method, the set of deciders for a pair of HNs is augmented to
include not only shared parents but also lower-level switches
that can reach both HNs. For example, in Figure 6, S2 would
be a decider for (and would ensure L2-coordinate uniqueness
among) all three L2HNs. The second method for preventing
M-graphs relies on coordinate assignments for core switches.
In this case, core switches group themselves into hypern-
odes and select shared coordinates, using representative L1

switches to factiliate cooperation. Lower level switches act
as deciders for these core-HNs. Both of these solutions in-
crease convergence time, as there may be up to n hops be-
tween a hypernode and its deciders in an n-level hierarchy.
Because of this, our implementation favors a simple detect-
and-resolve solution over the cost of preventing M-graphs.

3. COMMUNICATION
3.1 Routing
ALIAS labels specify the ‘downward’ path from a core to
the identified host. Each core switch is able to reach all
hosts with a label that begins with the coordinate of any
Ln−1HN directly connected to it. Similarly, each switch in
an LiHN can reach any host with a label that contains one
of the HN’s coordinates in the ith position. Thus, routing
packets downward is simply based on an Li switch matching
the destination label’s (i−1)th coordinate to the that of one
or more of its Li−1 neighbors.

To leverage this simple downward routing, ingress switches
must be able to move data packets to cores capable of reach-
ing a destination. This reduces to a matter of sending a data
packet towards a core that reaches the Ln−1HN correspond-
ing to the first coordinate in the destination label. Ln−1

switches learn which cores reach other Ln−1HNs directly
from neighboring cores and pass this information downward
via TVMs.. Switches at level Li in turn learn about the set
of Ln−1HNs reachable via each neighboring Li+1 switch.

2If the L1 switches’ coordinates did not overlap, detection
would occur at S7.
3It is possible that two HNs involved in an M-graph simulta-
neously detect and recover from a collision, causing an extra
relabeling. However, we optimize for the common case, as
this potential cost is small and unlikely to occur.

3.2 Forwarding
Switch forwarding entries map a packet’s input port and
coordinates to the appropriate output port. The coordinate
fields in a forwarding entry can hold a number, requiring an
exact match, or a ‘don’t care’ (DC) which matches all values
for that coordinate. An Li switch forwards a packet with
a destination label matching any of its own label prefixes
downward to the appropriate Li−1HN. If none of its prefixes
match, it uses the label’s Ln−1 coordinate to send the packet
towards a core that reaches the packet’s destination.

Figure 7 presents a subset of the forwarding tables entries
of switches S7, S4, and S1 of Figure 3(c), assuming the L1-
coordinate assignments of Figure 3(b) and that S1 has a
single host on port 3. Entries for exception cases are omit-
ted.

Core	
	 (S7)	

Level	 L2	
(S4)	

Level	 L1	

(S1)	

InPort	
 L2	
 L1	
 H	
 OutPort	

DC	
 1	
 DC	
 DC	
 1	

DC	
 7	
 DC	
 DC	
 0	

InPort	
 L2	
 L1	
 H	
 OutPort	

DC	
 7	
 5	
 DC	
 0	

DC	
 7	
 3	
 DC	
 1	

0/1	
 1	
 DC	
 DC	
 2	

InPort	
 L2	
 L1	
 H	
 OutPort	

0	
 7	
 5	
 3	
 3	

1/2	
 1	
 5	
 3	
 3	

3	
 7	
 DC	
 DC	
 0	

3	
 1	
 DC	
 DC	
 1/2	

Figure 7: Example of forwarding table entries

All forwarding entries are directional, in that a packet can
be headed ‘downwards’ to a lower level switch, or ‘upwards’
to a higher level switch. Directionality is determined by the
packet’s input port. ALIAS restricts the direction of packet
forwarding to ensure loop-free forwarding. The key restric-
tion is that a packet coming into a switch from a higher
level switch can only be forwarded downwards, and that a
packet moving laterally cannot be forwarded upwards. We
refer to this property as up*/across*/down* forwarding, an
extension of the up*/down* forwarding introduced in [18].

3.3 End-to-End Communication
ALIAS labels can serve as a basis for a variety of communi-
cation techniques. Here we present an implementation based
on MAC address rewriting.

When two hosts wish to communicate, the first step is gener-
ally ARP resolution to map a destination host’s IP address
to a MAC address. In ALIAS, we instead resolve IP ad-
dresses to ALIAS labels. This ALIAS label is then written
into the destination Ethernet address. All switch forward-
ing proceeds based on this destination label. Unlike stan-
dard Layer 2 forwarding, the destination MAC address is
not rewritten hop-by-hop through the network.

Figure 8 depicts the flow of information used to establish
end-to-end communication between two hosts. When an L1

H	

11	

L1	

Ln	

Ln-‐1	

H	

Discovery:	
IP	 address	

1	

3	

Mapping:	
IP	 address-‐>	
ALIAS	 labels	

2	

Grat.	 ARP:	
IP	 address-‐>	
ALIAS	 label	

Mapping:	
IP	 address-‐>	
ALIAS	 labels	

10	

12	

Mapping:	
IP	 address-‐>	
ALIAS	 labels	

Address	 Mappings/InvalidaEons	 Proxy	 ARP	

Mapping:	
IP	 address-‐>	
ALIAS	 labels	

8	

L1	

Ln	

Ln-‐1	

ARP	 query:	
IP	 address	

4	

6	

Proxy	 ARP	
Query:	

IP	 address	

5	

ARP	 reply:	
IP	 address-‐>	
ALIAS	 label	

Proxy	 ARP	
response:	
ALIAS	 labels	

7	

9	

Proxy	 ARP	
response:	
ALIAS	 labels	

Proxy	 ARP	
Query:	

IP	 address	

Figure 8: End-to-End Communication

switch discovers a connected host, it assigns to it a set of
ALIAS labels. L1 switches maintain a mapping between
the IP address, MAC address and ALIAS labels of each
connected host. Additionally, they send a mapping of IP
address-to-ALIAS labels of connected hosts upwards to all
reachable cores. This eliminates the need for a broadcast-
based ARP mechanism. Arrows 1-3 in Figure 8 show this
mapping as it moves from L1 to the cores.

To support unmodified hosts, ALIAS L1 switches intercept
ARP queries (arrow 4), and reply if possible (arrow 9). If
not, they send a proxy ARP query to all cores above them in
the hierarchy via intermediate switches (arrows 5,6). Cores
with the requested mappings reply (arrows 7,8). The query-
ing L1 switch then replies to the host with an ALIAS label
(arrow 9) and incorporates the new information into its lo-
cal map, taking care to ensure proper handling of responses
from multiple cores. As a result, the host will use this la-
bel as the address in the packet’s Ethernet header. Prior
to delivering a data packet, the egress switch rewrites the
ALIAS destination MAC address with the actual MAC ad-
dress of the destination host, using locally available state
information encoded in the hardware forwarding table.

Hosts can have multiple ALIAS labels corresponding to mul-
tiple sets of paths from cores. However, during ARP resolu-
tion, a host expects only one MAC address to be associated
with a particular IP address. To address this, the querying
host’s neighboring L1 switch chooses one of the ALIAS la-
bels of the destination host. This choice could be made in
a number of ways; switches could select randomly or could
base their decisions on local views of dynamically changing
congestion. In our implementation, we include a measure of
each label’s value when passing labels from L1 switches to
cores. We base a host label’s value on connectivity between
the host h and the core of the network as well as on the
number of other hosts that can reach h using this label. To
calculate the former, we keep track of the number of paths
from the core level to h that are represented by each label.
For the latter, we count the number of hosts that each core
reaches and weight paths according to these counts. An L1

switch uses these combined values to select a label out of
the set returned by a core.

Link additions and failures can result in relabeling. While
the routing protocol adapts to changes, existing flows to
previously valid ALIAS labels will be affected due to ARP
caching in unmodified end hosts. Here, we describe our ap-
proach to minimize disruption to existing flows in the face of
shifts in topology. We note however that any network envi-
ronment is subject to some period of convergence following
a failure. Our goal is to ensure that ALIAS convergence
time at least matches the behavior of currently deployed
networks.

Upon a link addition or failure, ALIAS performs appropri-
ate relabeling of switches and hosts (Section 2.3) and prop-
agates the new topology view to all switches as part of stan-
dard TVM exchanges. Recall that cores store a mapping of
IP addresses-to-ALIAS labels for hosts. Cores compare re-
ceived mappings to existing state to determine newly invalid
mappings. Cores also maintain a cache of recently queried
ARP mappings. Using this cache, core switches inform re-
cent L1 requesters that an ARP mapping has changed (ar-
rows 10-11), and L1 switches in turn send gratuitous ARP
replies to hosts (arrow 12).

Additionally, ingress L1 switches can preemptively rewrite
stale ALIAS labels to maintain connectivity between pairs
of hosts during the window of vulnerability when a gratu-
itous ARP has been sent but not yet received. In the worst
case, failure of certain cores may necessitate an ARP cache
timeout at hosts before communication can resume.

Recall that ALIAS enables two classes of multi-path sup-
port. The first class is tied to the selection of a particular
label (and thus a corresponding set of paths) from a host’s
label set, whereas the second represents a choice within this
set of paths. For this second class of multi-path, ALIAS
supports standard multi-path forwarding techniques such as
ECMP [7]. Essentially, forwarding entries on the upward
path can contain multiple next hops toward the potentially
multiple core switches capable of reaching the appropriate
top-level coordinate in the destination host label.

3.4 Peer Links
ALIAS considers peer links, links between switches at the
same level of the hierarchy, as special cases for forwarding.
There are two considerations to keep in mind when introduc-
ing peer links into ALIAS: maintaining loop-free forwarding
guarantees and retaining ALIAS’s scalability properties. We
consider each in turn below.

To motivate our method for accommodating peer links, we
first consider the reasons for which a peer link might ex-
ist in a given network. A peer link might be added (1)
to create direct connectivity between two otherwise discon-
nected HNs or cores, (2) to create a “shortcut” between two
HNs (for instance, HNs with frequent interaction) or (3) un-
intentionally. ALIAS supports intentional peer links with
up*/across*/down* forwarding. In other words, a packet
may travel upwards and then may “jump” from one HN to
another directly, or may traverse a set of cores, before mov-
ing downwards towards its destination.

Switches advertise hosts reachable via peer links as part of
outgoing TVMs. While the up* and down* components

Si	

Hj	 Hk	 Hi	

Sj	

Figure 9: Peer Link Tradeoff

of the forwarding path are limited in length by the over-
all depth of the hierarchy, the across* component can be
arbitrarily long. To avoid the introduction of forwarding
loops, all peer link advertisements include a hop count.

The number of peer link traversals allowed during the across*
component of forwarding represents a tradeoff between rout-
ing flexibility and ALIAS convergence. This is due to the
fact that links used for communication must also be con-
sidered for coordinate assignment, as discussed in Section
2.4. Consider the example of Figure 9. In the figure, dotted
lines indicate long chains of links, perhaps involving switches
not shown. Since host Hk can reach both other hosts, Hi

and Hj , switches Si and Sj need to have unique coordi-
nates. However, they do not share a common parent, and
therefore, must cooperate across the long chain of peer links
between them to ensure coordinate uniqueness. In fact, if
a packet is allowed to cross p peer links during the across*
segment of its path, switches as far as 2p peer links apart
must not share coordinates. This increases convergence time
for large values of p. Because of this ALIAS allows a net-
work designer to tune the number of peer links allowed per
across* segment to limit convergence time while still provid-
ing the necessary routing flexibility. Since core switches do
not have coordinates, this restriction on the length of the
across* component is not necessary at the core level; cores
use a standard hop count to avoid forwarding loops.

It is important that peer links are used judiciously, given the
particular style of forwarding chosen. For instance, support-
ing shortest path forwarding may require disabling “short-
cut” style peer links when they represent a small percentage
of the connections between two HNs. This is to avoid a sit-
uation in which all traffic is directed across a peer link (as
it provides the shortest path) and the link is overwhelmed.

3.5 Switch Modifications
We engineer ALIAS labels to be encoded into 48 bits to
be compatible with existing destination MAC addresses in
protocol headers. Our task of assigning globally unique hi-
erarchical labels would be simplified if there were no pos-
sibility of collisions in coordinates, for instance if we al-
lowed each coordinate to be 48-bits in length. If we adopted
longer ALIAS labels, we would require modified switch hard-
ware that would support an encapsulation header contain-
ing the forwarding address. Forwarding tables would need
to support matching on pre-selected and variable numbers
of bits in encapsulation headers. Many commercial switches
already support such functionality in support of emerging
Layer 2 protocols such as TRILL [20] and SEATTLE [10].

Our goal of operating with unmodified hosts does require
some support from network switching elements. ALIAS L1

switches intercept all ARP packets from hosts. This does not
require any hardware modifications, since packets that do
not match a flow table entry can always be sent to the switch
software and ARP packets need not necessarily be processed
at line rate. We further introduce IP address-to-ALIAS label
mappings at cores, and IP address, actual MAC address, and
ALIAS label mappings at L1. We also maintain a cache of
recent ARP queries at cores. All such functionality can be
realized in switch software without hardware modifications.

4. IMPLEMENTATION
ALIAS switches maintain the state necessary for level and
coordinate assignment as well as local forwarding tables.
Switches react to two types of events: timer firings and
message receipt. When a switch receives a TVM it updates
the necessary local state and forwarding table entries. The
next time its TVMsend timer fires, it compiles a TVM for
each switch neighbor as well as a ping for all host neigh-
bors. Neighbors of unknown types receive both. Outgoing
TVMs include all information related to level and coordi-
nate assignment, and forwarding state, and may include la-
bel mappings as they are passed upwards towards cores. The
particular TVM created for any neighbor varies both with
levels of the sender and the receiver as well as with the iden-
tity of the receiver. For instance, in a 3-layer topology, an
L2 switch sends the set of its neighboring L1 switches down-
ward for HN grouping by the representative L1 switch. On
the other hand, it need not send this information to cores.

Receive	
TVM	

Process	 w.r.t.	
Layer	

Process	 w.r.t.	
Coords	

Store	 	
Address	
Mappings	

Update	
Forwarding	

Tables	

TVMsend	
?mer	

Send	 TVM	
Compile	
TVM	 (UID,	
layer)	

Select	 next	
neighbor	

Figure 10: ALIAS Architecture

Figure 10 shows the basic architecture of ALIAS. We have
produced two different implementations of ALIAS, which we
describe below.

4.1 Mace Implementation
We first implemented ALIAS in Mace [5, 9]. Mace is a lan-
guage for distributed system development that we chose for
two reasons; the Mace toolkit includes a model checker [8]
that can be used to verify correctness, and Mace code com-
piles into standard C++ code for deployment of the exact
code that was model checked.

We verified the correctness of ALIAS by model checking our
Mace implementation. This included all protocols discussed
in this paper: level assignment, coordinate and label assign-
ment, routing and forwarding, and proxy ARP support with
invalidations on relabeling. For a range of topologies with
intermittent switch, host, and network failures, we verified
(via liveness properties) the convergence of level and coor-
dinate assignment and routing state as well as the correct

operation of label resolution and invalidation. Further, we
verified that all pairs of hosts that are connected by the
physical topology are eventually able to communicate.

4.2 NetFPGA Testbed Implementation
Using our Mace code as a specification, we implemented
ALIAS into an OpenFlow [2] testbed, consisting 20 4-port
NetFPGA PCI-card switches [12] hosted in 1U dual-core 3.2
GHz Intel Xeon machines with 3GB of RAM. 16 end hosts
connect to the 20 4-port switches wired as a 3-level fat tree.
All machines run Linux 2.6.18-92.1.18.el5 and switches run
OpenFlow v0.8.9r2.

Although OpenFlow is based around a centralized controller
model, we wished to remain completely decentralized. To ac-
complish this, we implemented ALIAS directly in the Open-
Flow switch, relying only on OpenFlow’s ability to insert
new forwarding rules into a switch’s tables. We also modi-
fied the OpenFlow configuration to use a separate controller
per switch. These modifications to the OpenFlow software
consist of approximately 1,200 lines of C code.

5. EVALUATION
We set out to answer the following questions with our ex-
perimental evaluation of ALIAS:

• How scalable is ALIAS in terms of storage require-
ments and control overhead?

• How effective are hypernodes in compacting forward-
ing tables?

• How quickly does ALIAS converge on startup and af-
ter faults? How many switches relabel after a topol-
ogy change and how quickly does the new information
propagate?

Our experiments run on our NetFPGA testbed, which we
augment with miswirings and peer links as necessary. For
measurements on topologies larger than our testbed, we rely
on simulations.

5.1 Storage Requirements
We first consider the storage requirements of ALIAS. This
includes all state used to compute switches’ levels, coordi-
nates, and forwarding tables.For a given number of hosts,
H, we determined the number of L1, L2, and L3 switches
present in a 3-level, 128-port fat tree-based topology. We
then calculated analytically the storage overhead required
at each type of switch as a function of the input topology
size, as shown in Figure 11. L1 switches store the most state,
as they may be representative switches for higher level HNs,
and therefore must store state to calculate higher level HN
coordinates.

We also empirically measured the storage requirements of
ALIAS. L1, L2, and L3 switches required 122, 52, and 22
bytes of storage, respectively for our 16-node testbed; these
results would grow linearly with the number of hosts. Over-
all, the total required state is well within the range of what
is available in commodity switches today. Note that this
state need not be accessed on the data path; it can reside in
DRAM accessed by the local embedded processor.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 2000 4000 6000 8000 10000 12000 14000

S
to

ra
g
e
 o

v
e
rh

e
a
d
 i
n

 b
y
te

s

Number of hosts (H)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 2000 4000 6000 8000 10000 12000 14000

S
to

ra
g
e
 o

v
e
rh

e
a
d
 i
n

 b
y
te

s

Number of hosts (H)

L3
L2
L1

Figure 11: Storage Overhead for 3-level 128-port tree

5.2 Control Overhead
We next consider the control message overhead of ALIAS.
Table 2 shows the contents of TVMs, both for immediate
neighbors and for communication with representative L1

switches. The table gives the expected size of each field,
(where S and C are the sizes of a switchID and coordinate),
as well as the measured sizes for our testbed implementation
(where S = 48, C = 8 bits). Since our testbed has 3 levels,
TVMs from L2 switches to their L1 neighbors are combined
with those to representative L1 switches (and likewise for
upward TVMs); our results reflect these combinations. Mes-
sages sent downwards to L1 switches come from all members
of an LiHN and contain per-parent information for each HN
member; therefore, these messages are the largest.

Sender and
Field

Expected Measured
Receiver Size Size

All-to-All level log(n) 2 bits
To Downward hints kC/2

L3 to L2: 6B
Neighbor dwnwrd HNs kS/2
To rep. per-parent hints k2C/4

L2 to L1: 28B
L1 switch per-parent dwnwrd HNs k2S/4

To coord C
Upward HN kS

L2 to L3: 5B
Neighbor rep. L1 S
From Rep. per-parent coords kC/2

L1 to L2: 7B
L1 switch HN assignment O(kS)

Table 2: Level and Coordinate Assignment TVM
Fields

The TVM period must be at least as large as the time it
takes a switch to process k incoming TVMs, one per port.
On our NetFPGA testbed, the worst case processing time
for a set of TVMs was 57µs plus an additional 291µs for
updating forwarding table entries in OpenFlow in a small
configuration. Given this, 100ms is a reasonable setting for
TVM cycle at scale. L1 switches send k

2
TVMs per cycle

while all other switches send k TVMs. The largest TVM is

dominated by k2S
4

, giving a control overhead of k3S
400

b
ms

. For
a network with 64-port switches, this is 31.5Mbps or 0.3%
of a 10Gbps link, an acceptable cost for a routing/location
protocol that scales to hundreds of thousands of ports with
4 levels and k = 64. This brings out a tradeoff between
convergence time and control overhead; a smaller TVM cycle
time is certainly possible, but would correspond to a larger
amount of control data sent per second. It is also important

to note that this control overhead is a function only of k and
TVM cycle time; it does not increase with link speed.

5.3 Compact Forwarding Tables
Next, we asses the effectiveness of hypernodes in compact-
ing forwarding tables. We use our simulator to generate fully
provisioned fat tree topologies made up of k-port switches.
We then remove a percentage of the links at each level of
the topology to model less than fully-connected networks.
We use the smallest possible coordinate domain that can
accommodate the worst-case number of pods for each topol-
ogy, and allow data packets to cross as many peer links as
needed, within the constraints of up*/across*/down* for-
warding.

Once the input topology has been generated, we use the
simulator to calculate all switches’ levels and HNs, and we
select random coordinates for switches based on common
upper-level neighbors. Finally, we populate forwarding ta-
bles based on the labels corresponding to the selected coor-
dinates and analyze the forwarding table sizes of switches.

Table 3 gives the parameters used to create each input topol-
ogy along with the total number of servers supported and the
average number of number of forwarding table entries per
switch. The table provides values for optimized forwarding
tables (in which redundant entries are removed and entries
for peer links appear only when providing otherwise unavail-
able connectivity) and unoptimized tables (which include
redundant entries for use with techniques such as ECMP).
As the tables shows, even in graphs supporting millions of
servers, the number of forwarding entries is dramatically re-
duced from the entry-per-host requirement of Layer 2 tech-
niques.

As the provisioning of the tree reduces, the number of for-
warding entries initially increases. This corresponds to cases
in which the tree has become somewhat fragmented from
its initial fat tree specification, leading to more HNs and
thus more coordinates across the graph. However, as even
more links are deleted, forwarding table sizes begin to de-
crease; for extremely fragmented trees, mutual connectivity
between pairs of switches drops, and a switch need not store
forwarding entries for unreachable destinations.

5.4 Convergence Time
We measured ALIAS’s convergence time on our testbed for
both an initial startup period as well as across transient
failures. We consider a switch to have converged when it
has stabilized all applicable coordinates and HN membership
information.

As shown in Figure 12(a), ALIAS takes a maximum of 10
TVM cycles to converge when all switches and hosts are ini-
tially booted, even though they are not booted simultane-
ously. L3 switches converge most quickly since they simply
facilitate L2-coordinate uniqueness. L1 switches converge
more slowly; the last L1 switch to converge might see the
following chain of events: (1) L2 switch `2a sends its co-
ordinate to L3 switch `3, (2) `3 passes a hint about this
coordinate to L2 switch `2b, which (3) forwards the hint to
its representative L1 switch, which replies (4) with an as-
signment for `2b’s coordinate.

Topology Info Forwarding Entries

levels ports
% fully total

optimized
without

provisioned servers opts

3

16

100

1024

22 112
80 62 96
50 48 58
20 28 31

32

100

8,192

45 429
80 262 386
50 173 217
20 86 95

64

100

65,536

90 1677
80 1028 1530
50 653 842
20 291 320

4

16

100

8,192

23 119
80 197 246
50 273 307
20 280 304

32

100

131,072

46 457
80 1278 1499
50 2079 2248
20 2415 2552

5 16

100

65,536

23 123
80 492 550
50 886 931
20 1108 1147

Table 3: Forwarding Entries Per Switch

These 4 TVM cycles combine with 5 cycles to propagate level
information up and down the 3-level hierarchy, for a total
of 9 cycles. The small variation in our results is due to our
asynchronous deployment setting. In our implementation, a
TVM cycle is 400µs, leading to an initial convergence time
of 4ms for our small topology. Our cycle time accounts for
57µs for TVM processing and 291µs for flow table updates
in OpenFlow. In general, the TVM period may be set to
anything larger than the time required for a switch to process
one incoming TVM per port. In practice we would expect
significantly longer cycle times in order to minimize control
overhead.

We also considered the behavior of ALIAS in response to
failures. As discussed in Section 2.3, relabeling is triggered
by additions or deletions of links, and its effects depend on
the HN membership of the upper level switch on the affected
link. Figure 12(b) shows an example of each of the cases
from Table 1 along with measured convergence time on our
testbed. The examples in the figure are for link addition;
we verified the parallel cases for link deletion by reversing
the experiments. We measured the time for all HN member-
ship and coordinate information to stabilize at each affected
switch. Our results confirm the locality of relabeling effects;
only immediate neighbors of the affected L2 switch react,
and few require more than the 2 TVM cycles used to recom-
pute HN membership.

6. RELATED WORK
ALIAS provides automatic, decentralized, scalable assign-
ment of hierarchical host labels. To the best of our knowl-
edge, this is the first system to address all three of our goals
simultaneously.

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	

%
	 o
f	 S
w
itc
he

s	
co
nv
er
ge
d	

TVM	 Cycles	

L1	 switches	 L2	 switches	
L3	 switches	 All	 switches	

(a) CDF of Initial Convergence Times

0	

1	

2	

3	

4	

5	

Case	 4	 Case	 3	 Case	 2	 Case	 1	
S5	 	 	 	 S1	 	 	 	 	 S2	 	 	 	 S3	 S5	 	 	 	 S1	 	 	 	 S2	 	 	 	 S3	

S4	 S5	

S1	 S2	

S6	

S3	

S7	
Before:	 {S4},{S5,	 S6}	
A8er:	 {S4,	 S5},{S56}	

S4	 S5	

S1	 S2	

Before:	 {S4},{S5}	
A8er:	 {S4,	 S5}	

S4	 S5	

S1	 S2	

Before:	 {S4,	 S5}	
A8er:	 {S4},{S5}	

S4	

S1	 S2	 S3	

S5	 	 	 	 S1	 	 	 S2	 	 S7	 	 	 S4	 	 	 S1	 	 	 	 S2	

TV
M
	 C
yc
le
s	

Case	 4	 Case	 3	 Case	 2	 Case	 1	

(b) Relabeling Convergence Times, dashed lines are new links

Figure 12: Convergence Analysis on startup and after failures

Our work can trace its lineage back to the original work
on spanning trees [15] designed to bridge multiple physical
Layer 2 networks. While clearly ground-breaking, spanning
trees suffer from scalability challenges and do not support hi-
erarchical labeling. SmartBridge [17] provides shortest path
routing among Layer 2 hosts but is still broadcast based and
does not support hierarchical host labels. More recently,
Rbridges [16] and TRILL [20] suggest running a full-blown
routing protocol among Layer 2 switches along with an ad-
ditional Layer 2 header to protect against forwarding loops.

SEATTLE [10] improves upon aspects of Rbridge’s scala-
bility by distributing the knowledge of host-to-egress switch
mapping among a distributed directory service implemented
as a one-hop DHT. In general, however, all of these earlier
protocols target arbitrary topologies with broadcast-based
routing and flat host labels. ALIAS benefits from the un-
derlying assumption that we target hierarchical topologies.

VL2 [6] proposed scaling Layer 2 to mega data centers us-
ing end-host modification and addressed load balancing to
improve agility in data centers. However VL2 uses an under-
lying IP network fabric, which requires subnet and DHCP
server configuration, and does not address the requirement
for automation.

Most related to ALIAS are PortLand [13] and DAC [4].
PortLand employs a Location Discovery Protocol for host
numbering but differs from ALIAS in that it relies on a cen-
tral fabric manager, assumes a 3-level fat tree topology, and
does not support arbitrary miswirings and failures. In ad-
dition, LDP makes decisions (e.g. edge switch labeling and
pod groupings) based on particular interconnection patterns
in fat trees. This limits the approach under heterogeneous
conditions (e.g. a network fabric that is not yet fully de-
ployed) and during transitory periods (e.g., when the system
first boots). Contrastingly, ALIAS makes decisions solely
based on current network conditions. DAC supports arbi-
trary topologies but is fully centralized. Additionally, DAC
requires that an administrator manually input configuration
information both initially and prior to any planned changes.

Landmark [21] also automatically configures hierarchy onto
a physical topology and relabels as a result of topology

changes for ad hoc wireless networks. However, Landmark’s
hierarchy levels are defined such that even small topology
changes (e.g. a router losing a single neighbor) trigger rela-
beling. Also, routers maintain forwarding state for distant
nodes while ALIAS aggregates such state with hypernodes.

7. CONCLUSION
Current naming and communication protocols for data cen-
ter networks rely on manual configuration or centralization
to provide scalable communication between end hosts. Such
manual configuration is costly, time-consuming, and error
prone. Centralized approaches introduce the need for an
out-of-band control network.

We take advantage of particular characteristics of data cen-
ter topologies to design and implement ALIAS. We show
how to automatically overlay appropriate hierarchy on top of
a data center network interconnect such that end hosts can
automatically be assigned hierarchical, topologically mean-
ingful labels using only pair-wise communication and with
no central components. Our evaluation indicates that ALIAS
holds promise for simplifying data center management while
simultaneously improving overall scalability.

8. ACKNOWLEDGMENTS
This section is optional; it is a location for you to acknowl-
edge grants, funding, editing assistance and what have you.
In the present case, for example, the authors would like to
thank Gerald Murray of ACM for his help in codifying this
Author’s Guide and the .cls and .tex files that it describes.

9. REFERENCES
[1] Cisco data center infrastructure 2.5 design guide.

http://tinyurl.com/23486bs.

[2] Openflow. www.openflowswitch.org.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In
Proceedings of the ACM SIGCOMM 2008 conference
on Data communication, SIGCOMM ’08, pages 63–74,
New York, NY, USA, 2008. ACM.

[4] K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen,
S. Lu, and W. Wu. Generic and automatic address
configuration for data center networks. In Proceedings

of the ACM SIGCOMM 2010 conference on
SIGCOMM, SIGCOMM ’10, pages 39–50, New York,
NY, USA, 2010. ACM.

[5] D. Dao, J. Albrecht, C. Killian, and A. Vahdat. Live
debugging of distributed systems. In Proceedings of
the 18th International Conference on Compiler
Construction: Held as Part of the Joint European
Conferences on Theory and Practice of Software,
ETAPS 2009, CC ’09, pages 94–108, Berlin,
Heidelberg, 2009. Springer-Verlag.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: a scalable and flexible data center
network. In Proceedings of the ACM SIGCOMM 2009
conference on Data communication, SIGCOMM ’09,
pages 51–62, New York, NY, USA, 2009. ACM.

[7] C. Hopps. Analysis of an equal-cost multi-path
algorithm, 2000.

[8] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat.
Life, death, and the critical transition: finding liveness
bugs in systems code. In Proceedings of the 4th
USENIX conference on Networked systems design &
implementation, NSDI’07, pages 18–18, Berkeley, CA,
USA, 2007. USENIX Association.

[9] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala,
and A. M. Vahdat. Mace: language support for
building distributed systems. In Proceedings of the
2007 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’07, pages
179–188, New York, NY, USA, 2007. ACM.

[10] C. Kim, M. Caesar, and J. Rexford. Floodless in
seattle: a scalable ethernet architecture for large
enterprises. In Proceedings of the ACM SIGCOMM
2008 conference on Data communication, SIGCOMM
’08, pages 3–14, New York, NY, USA, 2008. ACM.

[11] C. E. Leiserson. Fat-trees: universal networks for
hardware-efficient supercomputing. IEEE Transactions
on Computers, 34:892–901, October 1985.

[12] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
Netfpga–an open platform for gigabit-rate network
switching and routing. In Proceedings of the 2007
IEEE International Conference on Microelectronic
Systems Education, MSE ’07, pages 160–161,
Washington, DC, USA, 2007. IEEE Computer Society.

[13] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. PortLand: a scalable fault-tolerant
layer 2 data center network fabric. In Proceedings of
the ACM SIGCOMM 2009 conference on Data
communication, SIGCOMM ’09, pages 39–50, New
York, NY, USA, 2009. ACM.

[14] J.-H. Park, H. Yoon, and H.-K. Lee. The deflection
self-routing banyan network: a large-scale ATM switch
using the fully adaptive self-routing and its
performance analyses. IEEE/ACM Transactions on
Networks (TON), 7:588–604, August 1999.

[15] R. Perlman. An algorithm for distributed computation
of a spanningtree in an extended LAN. In Proceedings
of the ninth symposium on Data communications,
SIGCOMM ’85, pages 44–53, New York, NY, USA,
1985. ACM.

[16] R. Perlman. Rbridges: transparent routing. In
INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and
Communications Societies, volume 2, pages 1211 –
1218 vol.2, March 2004.

[17] T. L. Rodeheffer, C. A. Thekkath, and D. C.
Anderson. Smartbridge: a scalable bridge architecture.
In Proceedings of the conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’00, pages
205–216, New York, NY, USA, 2000. ACM.

[18] M. Schroeder, A. Birrell, M. Burrows, H. Murray,
R. Needham, T. Rodeheffer, E. Satterthwaite, and
C. Thacker. Autonet: a high-speed, self-configuring
local area network using point-to-point links. IEEE
Journal on Selected Areas in Communications,
9(8):1318 –1335, October 1991.

[19] H. J. Siegel and C. B. Stunkel. Inside parallel
computers: Trends in interconnection networks. IEEE
Computer Science & Engineering, 3:69–71, September
1996.

[20] J. Touch and R. Perlman. Transparent interconnection
of lots of links (TRILL): Problem and applicability
statement, RFC 5556, May 2009.

[21] P. F. Tsuchiya. The landmark hierarchy: a new
hierarchy for routing in very large networks. In
Symposium proceedings on Communications
architectures and protocols, SIGCOMM ’88, pages
35–42, New York, NY, USA, 1988. ACM.

[22] M. WalraedSullivan, R. Niranjan Mysore,
K. Marzullo, and A. Vahdat. Brief Announcement: A
Randomized Algorithm for Label Assignment in
Dynamic Networks. In Proceedings of the 25th
International Symposium on DIStributed Computing,
DISC ’11, 2011.

