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Automated Availability Management

Goal: Highly available data storage in large-scale distributed
systems in which

* Hosts are transiently inaccessible
* Individual host failures are common

Current peer-to-peer systems are prime examples

* Highly dynamic, challenging environment

* hosts join and leave frequently in short-term

* Hosts leave permanently over long-term

* Workload varies in terms of popularity, access patterns,
file size

These systems require automated availability management.

* Availability prediction
* Redundancy management to tolerate transient host disconnectivity.
* Dynamic Repair to tolerate long-term host failures.

We are exploring the challenges of automated availability management in the design,

implementation and evaluation of a read/write peer-to-peer file system
called Total Recall.

Availability Prediction

* Empirically predict availability based on based on measurements.

* Make predictions based on aggregates rather than for individual hosts.

* Short-term availability changes due to transient host failures.

* Long-term availability changes due to long-term host departures/failures.

Redundancy Mechanism

* Replication, Reed-Solomon codes, Tornado codes, Online codes.

* Choose redundancy mechanism based on storage, bandwidth and
performance tradeoffs.

* Use availability prediction to calculate required redundancy level.

Dynamic Repair

Eager repair: System repairs data redundancy
immediately in reaction to host departures.

Lazy repair: System uses additional redundancy
to mask transient host departures and defer
the costs of repair.

EAGER

System Reaction Time

Redundancy
For Total Recall, eager repair => replication, lazy repair => coding.

Repair Mechanism
Redundancy Mechanism

Redundancy Engine

Online coding [|Replication

Redundancy Redundancy
calculator calculator

Encoder

Decoder

NFSv3 interface

GETATTR, SETATTR,
LOOKUP, READLINK,
READ, WRITE, ...

Availability Monitor

Block Store

Storage System Operations - create, read, write and repair.

* Inodes are eagerly repaired.

* Data may be eagerly or lazily repaired.

Current Prototype

* Runs on PlanetLab.
* Exports the NFSv3 interface.

* Builds on the SFS toolkit and MIT's Chord implementation.
* Uses replication and Online codes as redundancy mechanismes.

Simulation

* Simulated 5500 hosts from traces obtained from Overnet P2P file-sharing system.

* Simulated 5500 files. File size distribution obtained from Saroiu et al.'s description
of KaZaA workload.

Repair behavior of Total Recall over time
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* Available file redundancy = amount of
redundant data the system has available
to it to reconstruct the file.
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* Total Recall trades off storage overhead
and repair bandwidth.

* Eager repair requires the least storage,
but most repair bandwidth. Ideal for
small metadata.

* Lazy repair smoothly trades off storage
(coding stretch factor) with repair
bandwidth.Total Recall adjusts degree
of redundancy to host availability
characteristics.
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Prototype Evaluation

* Ran Total Recall prototype on 16 PlanetLab nodes from USA and Europe.

* Used "cp" command through NFS interface to measure file read and write time.
* Measured file repair time.

* All numbers reported for one-file read/write/repair.

Writes are most time-consuming since
they comprise of the following
‘ operations:inode read, data read, data
write and inode write
Reads are less time-consuming, since
they comprise the following
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