Total Recall: System Support for Automated Availability Management

Ranjita Bhagwan, Kiran Tati, Yuchung Cheng, Stefan Savage, Geoffrey M.Voelker
University of California, San Diego

Availability Management System Design System Evaluation

Automated Availability Management

Goal: Highly available data storage in large-scale distributed
systems in which

* Hosts are transiently inaccessible
* Individual host failures are common

Current peer-to-peer systems are prime examples

* Highly dynamic, challenging environment

* hosts join and leave frequently in short-term

* Hosts leave permanently over long-term

* Workload varies in terms of popularity, access patterns,
file size

These systems require automated availability management.

* Availability prediction
* Redundancy management to tolerate transient host disconnectivity.
* Dynamic Repair to tolerate long-term host failures.

We are exploring the challenges of automated availability management in the design,

implementation and evaluation of a read/write peer-to-peer file system
called Total Recall.

Availability Prediction

* Empirically predict availability based on based on measurements.

* Make predictions based on aggregates rather than for individual hosts.

* Short-term availability changes due to transient host failures.

* Long-term availability changes due to long-term host departures/failures.

Redundancy Mechanism

* Replication, Reed-Solomon codes, Tornado codes, Online codes.

* Choose redundancy mechanism based on storage, bandwidth and
performance tradeoffs.

* Use availability prediction to calculate required redundancy level.

Dynamic Repair

Eager repair: System repairs data redundancy
immediately in reaction to host departures.

Lazy repair: System uses additional redundancy
to mask transient host departures and defer
the costs of repair.

EAGER

System Reaction Time

Redundancy
For Total Recall, eager repair => replication, lazy repair => coding.

Repair Mechanism
Redundancy Mechanism

Redundancy Engine

Online coding [|Replication

Redundancy Redundancy
calculator calculator

Encoder

Decoder

NFSv3 interface

GETATTR, SETATTR,
LOOKUP, READLINK,
READ, WRITE, ...

Availability Monitor

Block Store

Storage System Operations - create, read, write and repair.

* Inodes are eagerly repaired.

* Data may be eagerly or lazily repaired.

Current Prototype

* Runs on PlanetLab.
* Exports the NFSv3 interface.

* Builds on the SFS toolkit and MIT's Chord implementation.
* Uses replication and Online codes as redundancy mechanismes.

Simulation

* Simulated 5500 hosts from traces obtained from Overnet P2P file-sharing system.

* Simulated 5500 files. File size distribution obtained from Saroiu et al.'s description
of KaZaA workload.

Repair behavior of Total Recall over time

* System bandwidth varies with host P —
availability. Host departures trigger oo k. Bencintoed —a—

high-bandwidth data repairs, Host H
EDZ | ll“i““llll;lll[“'lhiili

2580 =

Number of avail. hosts
o
(-]
Bandwidth (MB/s

metadata repairs.

* Available file redundancy = amount of
redundant data the system has available
to it to reconstruct the file.

* Avg.file redundancy achieves stable

value even as host availability varies 0 , , , , . . :

substantially. o e]

l '
el

T
& 7
T

arrivals trigger lower-bandwidth

1

&
1 . R =
1 = n_" | & ,."_‘_1--;_ - il
- Peant 2 ok e L Tt T | .
e e R e T i T P F R o i
06 | i iy s TV i ¥ Ty eyl TY T Y “aymnaf ¥ ¥ 06

04 < 0.4

Bandwidth (MB/s)

02 - 4 0.2

Avg. available file redundancy

Host bandwidth usage for different repair policies as a CDF

] Eager

| Lazy (sf 4) - :

o Lazy (sf6) ——
0.8 | Lazy (sf8) ——

* Total Recall trades off storage overhead
and repair bandwidth.

* Eager repair requires the least storage,
but most repair bandwidth. Ideal for
small metadata.

* Lazy repair smoothly trades off storage
(coding stretch factor) with repair
bandwidth.Total Recall adjusts degree
of redundancy to host availability
characteristics.

0.7
0.6
0.5
0.4
03 |
0.2 ¢

0.1 ___,/// g
. L .

0.001 0.01 0.1 1 10 100 1000
Bandwidth (Kilobytes per second)

Prototype Evaluation

* Ran Total Recall prototype on 16 PlanetLab nodes from USA and Europe.

* Used "cp" command through NFS interface to measure file read and write time.
* Measured file repair time.

* All numbers reported for one-file read/write/repair.

Writes are most time-consuming since
they comprise of the following
‘ operations:inode read, data read, data
write and inode write
Reads are less time-consuming, since
they comprise the following
2000 | operations:inode read, data read, and

e S inode write.
1000]

7000

Read ——

P S—

6000 | Repair —=—
5000 |

4000 r

Time (ms)

3000 r

Repairs are the fastest since they do
0 1 [1 1 I . . .
0 50 100 150 200 250 300 not involve remote inode read/write
File size (KB)

operations.

