Privacy-Preserving Attribution and Provenance

Alex C. Snoeren, Stefan Savage, Amin Vahdat, Geoffrey M. Voelker, and Yoshi Kohno
University of California, San Diego and the University of Washington

The crisis of anonymity on the Internet

Complete anonymity

Prima Facie, digital objects like packets are not unique
- Contrast to physical objects/actions which tend to carry/acquire distinguishing attributes
- E.g., Location/Time, Weight, Size, Fingerprints/DNA...

Thus, there is a heavier burden to attribute digital actions
- Yet, users have an expectation or rights to privacy
- Hence, we don’t want to leak physical identity

Must not repeat notable historic failures
- Clipper/Capstone chip (1993) encrypted voice/data; keys escrowed with the government
- Intel Pentium III PSN (1999) had unique per-processor serial number
- Both abandoned in face of huge pressure from civil liberties groups

A first step towards accountability

- Provide network support to tie a digital action (packet) to a physical machine
 - Link different criminal actions
 - User attribution via ownership records/physical forensics
- Any network element can vet a packet as being “attributable,” but can’t identify physical machine (privacy preserving)
- Authorized actor can reveal origin for any attributable packet at any point in future
- Key mechanism: short group signature
 - PK cryptosystem; \(n \) secret keys, one public verification key, and one opener key
 - Verify(): signature was generated with one of the group’s secret keys
 - Open(): reveals which secret key generated this signature
 - Standard symmetric-key crypto is not sufficient: no way to verify signatures

Our prototype implementation: CLUE

- Assume secure hardware (TPM) on each device (secure key & computation)
- Digitally sign each packet; signature identifies physical origin
- Expensive in naive implementation: 24ms sign, 28ms verify
- We have implemented several optimizations
 - Precomputation: Most of signature can be pre-computed in advance (during idle cycles); sign 35us
 - Windowed verification: Modify signature so you can verify this packet or window of the last \(n \) packets
 - Asynchronous verification: Overlap verification with communications