Putting Network Anonymity in the Network
Barath Raghavan, Tadayoshi Kohno, Alex Snoeren, David Wetherall
University of California, San Diego and University of Washington

Goal
• Internet addresses directly identify long-lived hosts; anonymity remains a critical feature currently absent in the Internet
• We aim to provide a high-performance and deployable anonymity service by building it into the network, without re-routing

Background
What are the goals of network anonymity?
• Disassociating the user’s identity from her observed network traffic
• Hiding the user’s identity from a remote party
• Hiding the remote party’s identity from the user

How can network anonymity be achieved?
• Via a set of re-encrypted overlay hops (a Mix network)
• Via a broadcast channel (a Dining Cryptographer network)
• Via masked forwarding through another host or gateway

What are the advantages and disadvantages of anonymity?
• Increased personal privacy; less potential for identity theft (+)
• Promotes a free exchange of ideas and information (+)
• Decreased personalization of content and services (−)
• Potential loss of accountability (−)

Related Work
Tor (The Onion Router)
• Socket-layer anonymity system; mix-net based
• Re-routing and resource constraints lead to poor performance
• Operates on ~ 1000 volunteer hosts worldwide

The Freedom Network
• Application-layer anonymity system; mix-net based
• Cover traffic, dedicated hosts, and data filters: strong anonymity
• Not in operation (out of business); bandwidth costs prohibitive

Crowds
• Web browser anonymity system; forwarding based
• Probabilistic forwarding, no encryption
• Weaker anonymity, higher performance

System Design Considerations
Threat Model: Goals and Assumptions
• Prevent discovery of communication between unsuspect parties
• Hosts and their anonymity provider have a trust relationship
• Protect against a partially-global passive adversary

System Non-Goals
• To prevent insider attacks by those within an ISP
• To prevent long-term intersection attacks
• To provide data privacy or authenticity

External Factors
• Application-layer attacks require application-layer protection
• Timing attack prevention requires cover traffic
• DNS lookup protection requires an external, secure DNS resolver

Challenges
Performance and Scalability
• Forwarding remains on default paths: low delay
• Simple cryptographic operations: high bandwidth
• Constant state at forwarding gateways

Anonymity sets
• Large ISPs have large IP address blocks for hiding
• Route advertisements can be aggregated to aid

Deployment
• Network service providers have unilateral incentive
• Users suffer little performance degradation
• Compatible with forensic requirements
• No client-side changes; DNS changes for server-side

Current Status
• In-line anonymity has the potential to deliver high performance with clear deployability incentives
• Our architecture can easily be composed with overlay-based anonymity approaches, enabling defense in depth
• No prior systems provide in-network anonymity; design space provides fertile ground for network architecture research

Address Hiding Protocol operation
1. Packet sent $S \rightarrow D$, implicit nonce (src port and timestamp bits)
2. Source address encrypted: $E_p(suit)$ where $p = E_s$(nonce)
3. Destination address decrypted: $D_p(suit)$ of S