HIPStR - Heterogeneous-ISA Program State Relocation

Ashish Venkat

Sriskanda Shamasunder

Dean M. Tullsen Hovav Shacham

University of California, San Diego
{asvenkat | sshamasu | tullsen | hovav}@cs.ucsd.edu

Abstract

Heterogeneous Chip Multiprocessors have been shown to
provide significant performance and energy efficiency gains
over homogeneous designs. Recent research has expanded

the dimensions of heterogeneity to include diverse Instruction-

Set Architectures, called Heterogeneous-ISA Chip Multi-
processors. This work leverages such an architecture to re-
alize substantial new security benefits, and in particular, to
thwart Return-Oriented Programming. This paper proposes
a novel security defense called HIPStR — Heterogeneous-
ISA Program State Relocation — that performs dynamic
randomization of run-time program state, both within and
across ISAs. This technique outperforms the state-of-the-
art just-in-time code reuse (JIT-ROP) defense by an average
of 15.6%, while simultaneously providing greater security
guarantees against classic return-into-libc, ROP, JOP, brute
force, JIT-ROP, and several evasive variants.

1. Introduction

Heterogeneous chip multiprocessors employ CPU cores of
different organization or size that offer varying degrees of
micro-architectural complexity [1, 2, 3, 4] and/or core spe-
cialization [3, 6, 7, 8]. Owing to their high performance and
execution efficiency, these architectures have been show-
cased, for example, as promising candidates towards achiev-
ing energy proportionality in large data-centers [9, 10, 11].
While early work on on-chip heterogeneity [12, 13] re-
stricted cores to implement a single instruction set archi-
tecture (ISA), recent findings [14, 15, 16, 17, 18] indicate
that a heterogeneous-ISA chip multiprocessor (CMP) is not
only a viable option, but has greater potential both in terms
of performance and efficiency.

A heterogeneous-ISA CMP synergistically complements
architectural heterogeneity with micro-architectural hetero-
geneity, and allows an application (compiled to each ISA as
a fat binary) to dynamically identify the ISA of its preference

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions @acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS 16, April 02-06, 2016, Atlanta, GA, USA

Copyright © 2016 ACM 978-1-4503-4091-5/16/04. ... $15.00

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2872362.2872408

and migrate execution at any given point of time. In this pa-
per, we leverage this architecture to demonstrate significant
new security benefits, and in particular, showcase its ability
to defend against an evasive class of buffer overflow exploits
called Return-oriented Programming (ROP) [19, 20].

Return-oriented Programming chains together short code
snippets in the program (called gadgets) that end with a re-
turn or an indirect jump instruction, by overflowing the stack
with a carefully constructed sequence of return addresses,
and other data required for malicious computation. ROP has
been shown to be Turing-complete for multiple ISAs, and
over a wide range of applications [19, 21, 22, 23, 24, 25].
Several exploit mitigation techniques have been described
in the literature to thwart ROP. These mitigations can be
broadly classified as (a) control flow integrity (CFI) tech-
niques [26, 27, 28, 29, 30, 31, 32, 33] that constrain execu-
tion to a predefined control flow graph, or (b) randomization
techniques [34, 35, 36, 37, 38, 39, 40, 41] that enable a sys-
tem to exist in one of many random states such that it is hard
to predict the exact location or manifestation of a gadget.

The success of randomization techniques is directly pro-
portional to the entropy (number of randomizable states)
they provide, and the extent to which they are resistant to en-
tropy reduction attacks [42, 43, 44]. In their most powerful
form, entropy reduction attacks called just-in-time return-
oriented programming (JIT-ROP) [45], completely bypass
all randomization, using a single leaked memory disclosure.
Therefore, it is critical to design robust and performance-
efficient randomization techniques that provide an entropy
that is beyond the reach of state-of-the-art exploit genera-
tion. In this work, we find that the low overhead of exe-
cution migration in a heterogeneous-ISA CMP makes it a
natural candidate to repel such attacks, and therefore pro-
pose a novel defense mechanism called Heterogeneous-ISA
Program State Relocation (HIPStR), that performs dynamic
randomization of run-time program state, both within and
across ISAs.

First, we leverage a heterogeneous-ISA CMP composed
of an ARM core and an x86 core, and non-deterministically
migrate execution of a vulnerable process between the two
ISAs, in such a way that we render JIT-ROP attacks ex-
tremely hard to execute, while still retaining inherent per-
formance gains offered by the architecture. Consequently,
we remove one of the last remaining “constants” available

Buffer Overflowed Stack Dynamic Execution Stream

pop %eax
ret

%eax
%ecx
%edx, %edx

Oxb

%ebx, 4 (%esp)
$0x80

pop %ecx
ret

Stack growth

T

xor %edx,%edx
ret

mov %ebx, 4(%esp)
ret

- int $0x80

“/bin’

“Jsh’

Address of pointer to ‘/bin/sh’

Figure 1. Return-oriented Programming

to the attacker — knowledge of the ISA the program is exe-
cuting on.

Second, we note that any program, including a return-
oriented program, requires a certain amount of program
state, in the form of registers and memory, to perform any
computation in the target ISA. To this end, we employ a
dynamic binary translation engine on both cores that moves
the run-time program state of an application to random and
attacker-unknown locations, such that legitimate execution
that preserves control flow is guaranteed to function as ex-
pected, but an attacker-crafted malicious exploit is highly
unlikely to function as intended.

To demonstrate the full potential of the proposed security
defense, we subject it to a line of malicious ROP-style at-
tacks, including classic return-into-libc, jump-oriented pro-
gramming, simple brute force, and just-in-time code reuse.
Consequently, we make the following major observations:

(1) The sheer amount of entropy provided by our defense
renders brute force attacks such as Blind-ROP [46] practi-
cally impossible, for current or even distant future micropro-
Cessors.

(2) Our ability to perform seamless and instantaneous
execution migration across heterogeneous ISAs significantly
inhibits just-in-time code reuse attacks, forcing an attacker
to construct heterogeneous-ISA exploits that are extremely
hard to execute, as shown in Section 7.

(3) Our performance focused migration policy and ma-

ture optimization techniques help us outperform Isomeron [35],

the only other JIT-ROP defense, by an average of 15.6%,
while simultaneously providing greater security guaran-
tees against brute force, JIT-ROP, and more tailored attacks
geared to break execution path diversification.

(4) We defend against all variants of classic ROP-style at-
tacks [19, 21, 47, 48], and reduce their overall attack surface
to such an extent that it is difficult to construct a four-gadget
shellcode exploit, let alone achieve Turing-completeness.

2. Background and Related Work

Heterogeneous-ISA CMPs. Architects have established
that on-chip heterogeneity is an effective mechanism to
improve processor efficiency for both general purpose and

embedded computing [2, 3, 8, 12, 13, 49, 50]. In the em-
bedded world, it is not uncommon for architects to ex-
ploit both architectural and microarchitectural heterogeneity
to realize heterogeneous-ISA MPSoCs, that cater to a di-
verse class of applications such as wireless networks, signal
processing, multimedia, packet switching, and cybersecu-
rity [7, 51, 52, 53, 54]. While examples of heterogeneous-
ISA chip multiprocessors do exist in the general-purpose
market [6, 8], they haven’t been targeted for mainstream
mixed workloads yet. However, recent research proposals
have demonstrated the performance and energy benefits of
such architectures [14, 15, 16, 17, 18]. This work showcases
the immense potential of this architecture from a security
standpoint.

Return-Oriented Programming. Buffer overflow vul-
nerabilities form a major chunk of the security loopholes
that plague the Internet today. They rank third amongst the
common vulnerability types reported by the National Vul-
nerability Database, finishing just behind cross site and cryp-
tographic vulnerabilities [55]. These vulnerabilities have
been systematically exploited by code reuse attacks such as
return-into-libc [48], which exploits a buffer overflow on the
stack to return into a libc function. Despite its ability to sub-
vert control flow without injecting malicious code, return-
into-libc is inherently limited to /ibc, and thus incapable of
performing arbitrary malicious computation. In recent years,
return-into-libc attacks have evolved into a more general and
flexible scheme of attacks called Return-oriented Program-
ming (ROP) [19, 20].

Figure 1 shows a ROP attack that spawns a command
shell. The attack begins with an attacker injecting an exploit
payload on to the stack, exploiting a buffer overflow. The
payload is crafted to overwrite the return address with the
address of a short code snippet within the program, called
a gadget, that ends in a return instruction. Once the gad-
get has executed and the instruction pointer has reached
the return instruction, the stack pointer points to the ad-
dress of the next gadget, and the exploit continues. ROP
hinges on the attacker being able to control the stack pointer
and use it as the instruction pointer. Several evasive vari-
ants of ROP have been described in the literature that use
indirect jumps in place of returns (Jump-oriented program-
ming (JOP) [21, 23, 56]), and provide Turing-completeness
on different instruction set architectures [22, 25]. The ad-
vent of automated exploit compilers has further made ROP
a formidable attack technique to defend against [57].

Control Flow Integrity. Abadi, et al. [26] first formal-
ized the idea of CFI. The main idea of that work is to con-
strain the execution of the program to a predefined control
flow graph (CFG) by instrumenting the program to perform
ID-checks before every indirect jump. They also observe
that it is difficult to implement ideal CFI statically, with-
out a runtime mechanism to track function calls and indi-
rect jumps. There has been significant follow-up work on
CFI at the hardware, runtime, and compiler levels [27, 28,
58, 59, 60, 61, 62]. More recent work such as CCFIR [32],

bin-CFI [31], branch regulation [30], and code pointer in-
tegrity [33] have made significant strides in reducing the at-
tack surface, by employing more fine-grained CFI, in the ab-
sence of any source or debug information, and at an accept-
able degradation in performance. However, several backdoor
attacks [63, 64, 65, 66, 67, 68, 69, 70] have been described
in the literature to bypass these techniques, thereby exposing
the need for a stricter enforcement of CFI. HIPStR is orthog-
onal to these defenses and could be applied in conjunction.
HIPStR also defends against all the above backdoor attacks
since we make no assumptions about CFI or memory safety.

Randomization and Obfuscation. Yet another class of
ROP defenses randomize the location of gadgets in the pro-
cess image, making the attack only probabilistic. Several
gadget location randomization techniques have been pro-
posed in the literature, at various granularities — mod-
ule (ASLR [39]), basic block [41], instruction [36], and
byte [40] levels. Furthermore, several binary re-writing and
gadget obfuscation mechanisms [37, 38, 71, 72, 73, 74] have
been proposed to restrict the number of useful gadgets in a
program.

In the presence of a memory disclosure vulnerability,
these randomization techniques can be bypassed by simple
brute-force attacks [43, 46] that exploit a memory disclosure,
in just a matter of a few thousand attempts. Moreover, the
load-time nature of these techniques makes them highly sus-
ceptible to just-in-time code reuse (JIT-ROP) attacks that ex-
ploit a single leaked memory disclosure to read code pages in
memory, disassemble them, and reconstruct the control flow
graph on-the-fly. Snow, et al. [45] show that JIT-ROP can
bypass a combination of fine-grained randomization tech-
niques, in a matter of 23 seconds. In this work, we demon-
strate significant resistance against entropy exhaustion by
employing run-time randomization instead of load-time ran-
domization.

As of this writing, Oxymoron [34] and Isomeron [35] are
the only two techniques that have claimed full immunity to
JIT-ROP. Oxymoron leverages x86 segmentation and page-
level randomization to re-encode direct branches as indirect
branches in such a way that the target address of a direct
branch is hidden from a JIT-ROP attacker, thereby thwarting
the reconstruction of a program’s control flow graph on-the-
fly. However, Davi, et al. [35] describe a backdoor attack to
successfully bypass Oxymoron by disclosing a large number
of pages using code pointers, such as return addresses or
pointers to virtual methods, gleaned off the stack or the heap.

Isomeron, on the other hand, harnesses software diversity
and probabilistic execution by randomly switching between
two versions of the program, one original and one diversi-
fied, at every function call. Our work differs from Isomeron
in that we diversify code both within and across the ISA, thus
randomizing the architecture itself. Moreover, HIPStR can
defend against return-into-libc and JOP attacks owing to its
ability to randomize calling conventions and switch between
different ISAs at basic block boundaries, unlike Isomeron
which is a function-level diversification technique. HIPStR

exploits the already existing architectural heterogeneity in
modern processors to provide significantly higher entropy
and greater reduction in attack surface, at a lower perfor-
mance overhead than Isomeron.

JIT-hardening. The NVD database shows that JIT en-
vironments such as browsers and Adobe Flash are com-
mon targets of code reuse attacks. Specifically, JIT-spraying
techniques exploit the just-in-time compilation functional-
ity to generate predictable chunks of exploit code in the
text section, using carefully crafted JavaScript or Action-
Script, called GaJITS [75]. Such environments typically em-
ploy JIT-hardening techniques such as page randomization,
constant blinding [75], and random NOP insertion on each
JIT-compiled page to defend against JIT-spraying. Our tech-
nique can be seamlessly integrated into such JIT environ-
ments since we already employ dynamic binary translation.
Furthermore, unlike Isomeron, we not only defend against
JIT-ROP, but also defend against JIT-spraying, because we
enforce program state relocation on all JIT-compiled code
including JIT-sprayed gadgets.

3. Architectural Overview

In this section, we lay out our security and performance
guarantees, briefly recap the multi-ISA compilation and dy-
namic task migration methodology outlined in prior work [14,
15], and discuss strategies to harness and re-purpose these
techniques as a security defense for ROP.

3.1 Security and Performance Guarantees

Security. One of the main goals of HIPStR is to defend
against and reduce the attack surface of a wide array of at-
tacks, including but not limited to return-into-libc, ROP, JOP,
brute force attacks, JIT-ROP, and JIT-spraying. For any pro-
gram in execution, HIPStR dynamically randomizes the lo-
cation of its program state (registers and stack objects) in
order to render brute-force attacks infeasible. Furthermore,
HIPStR has the ability to detect a potential break-in attempt
via JIT-ROP, and when detected, probabilistically migrates
execution to a different ISA, thereby imposing serious limi-
tations on JIT-ROP attacks.

Performance. HIPStR makes several careful performance-
related decisions in order to provide security guarantees, at
an acceptable degradation in performance, and outperform
Isomeron, the only other JIT-ROP defense in the literature.
First, unlike Isomeron which diversifies execution at every
function call and return, HIPStR migrates execution to a
different ISA only when a potential security breach is de-
tected, thereby enjoying full security benefits at virtually
zero performance overhead due to migration. Second, HIP-
StR implements several optimizations described in Section 5
in order to speed up the underlying dynamic binary transla-
tion framework.

3.2 Multi-ISA compilation

Process migration across heterogeneous ISAs requires ex-
pensive program state transformation because the run-time

Program Binary

Dynamic Binary Translator ‘

Randomizer

Function-Level Relocation Map

Extended Symbol Table ‘ ‘

BB#2 :
Live Regs: %ebx : a | %edx : b
Callee Save: [SP+3156] : %ret |
Arguments: [SP+4768] : argl
Fixed Stack Slots: [SP+1072] : a Randomize
Relocatables : [SP+1072] : a Calling —
Convention
Code Section @I
ieBHL:
mov 0x30(%esp), %esi Disassembler
bret] t
| BB#2: @

Translation Engine

@)

%eax, 0x48
icall *(%eax)

Relocation Map

I

Register
Reallocation

Code Cache Miss Handler

Registers:
ebx -> [esp+0x80c]
edx -> eax

I

Stack Objects:
Stack Slot %RET -> [esp + 0xc58]
Coloring
l Processor
Performance I-Cache
Optimizer
CPU
i
Code Cache @ L] D-Cache
or %al, Ox80c (%esp) |
| add $c54, %esp 1 |
LIt _ H/W Return Address Table
Source Address | Target Address
= @ 0x1001beef 0x08048abc

Figure 2. Program State Relocation Architecture

program state (registers and memory) is always present in
architecture-specific form. The multi-ISA compilation in-
frastructure outlined in prior work ensures minimal state
transformation by taking advantage of a symmetrical fat bi-
nary with multiple ISA-specific code sections, a common
stack frame organization, and a common ISA-agnostic data
section. Furthermore, a multi-ISA runtime transforms the
program state (registers and stack) upon migration to a dif-
ferent ISA at specific equivalence points, after which point
execution can be safely resumed on a different ISA.

3.3 Instruction Set Randomization

From a security standpoint, heterogeneous-ISA CMPs have
two major advantages. First, ROP attacks are highly target-
ISA dependent. An application that migrates between multi-
ple heterogeneous-ISA cores executes instructions from dif-
ferent instruction sets. If a migration is forced upon exe-
cution of every ROP gadget, a successful attack would re-
quire chaining gadgets from different ISAs, and yet produce
a meaningful result (e.g., spawn a shell). Furthermore, if we
make migration probabilistic, we remove the most funda-
mental assumption of the attacker — knowledge of what ISA
the gadget will execute on. The second advantage is that
execution migration in a heterogeneous-ISA CMP requires
stack transformation. This especially constrains ROP gad-
gets to save all intermediate state in locations that are im-
mune to run-time stack transformation (e.g., heap memory),
thereby significantly reducing the attack surface.

Several fine-grained randomization techniques proposed
in prior work have been shown to be broken by JIT-ROP [45]
that exploits a single leaked memory disclosure to recon-
struct the entire memory image of the process, and thereby
bypass all randomization. Instruction Set Randomization in
a heterogeneous-ISA CMP, however, severely inhibits JIT-
ROP. This is because the decision to migrate execution to a
different ISA is made probabilistically at run-time, thereby
limiting an attacker’s ability to chain gadgets reliably.

While randomization across heterogeneous-ISAs system-
atically removes the knowledge of what architecture the at-
tacker is executing on, in the next section, we show how ran-
domization within an ISA could further extend the effective-
ness of our technique.

3.4 Program State Relocation

Program State Relocation (PSR) comprises a set of dynamic
binary code transformations that can be easily deployed in
any JIT-based system. The major goal of program state re-
location is to shuffle program state (registers and memory)
such that it is always found at the expected location during
legitimate execution, but it is highly unlikely to be found by
a ROP gadget that strays away from the legitimate control
flow path.

As shown in Figure 2, the PSR runtime operates in a clas-
sic just-in-time dynamic translation mode, processing one
basic block at a time. For each basic block in translation, it
gathers information about the parent function, which is avail-
able from static analysis. Irrespective of the point of entry,
the PSR runtime constructs a relocation map for every func-
tion, if it is being entered for the first time. The relocation
map specifies the randomized calling conventions to be fol-
lowed while calling the function, along with a set of random-
ized register allocation and stack slot coloring rules to be fol-
lowed within that function. In Section 5, we describe each
transformation in detail. The figure shows an example PSR
transformation — BB#2 in the code section is transformed to
the basic block shown in the code cache. Note that PSR just
requires a simple change in the addressing mode of the in-
struction or in order to relocate its original operands d/ and
bl to al and [esp+0x80c], as indicated by the relocation map
respectively. Note that the return address is also moved to a
random location on the stack.

As with classic DBT [76, 77], translation is performed
until an indirect or conditional jump is reached, at which
point control is transferred to the translated code in the code
cache. If a translation for the jump target is not available (a

code cache miss), necessary transformations are applied as
described above, and control is relinquished to the translated
code. To ensure the code cache does not get compromised,
we mandate that all return addresses stored on the stack point
to original source code instead of the translated version. Fur-
thermore, we make minor changes to the call and return in-
structions (macro-ops) to perform an extra cycle look-up in
a hardware-maintained Return Address Table (RAT), in or-
der to translate the source-level address to its corresponding
translated version before making the actual control transfer.
The effect of program state relocation is that an object
previously found in a register may be relocated to a different
register or a random location on the stack, and vice-versa.
Due to the sheer number of stack locations available to use
for relocating an object, the number of possible dynamic
code transformations (entropy) explodes, thereby rendering
classic brute force attacks such as Blind-ROP [46] practi-
cally impossible on a system implementing PSR. Moreover,
since the transformations happen at run-time rather than
load-time, a PSR system will always re-randomize upon a
crash or reboot, further strengthening its effectiveness.

3.5 Heterogeneous-ISA PSR

Instruction Set Randomization and Program State Reloca-
tion each represent strong defenses independently. However,
we find that there is significant synergy between the two
techniques, and one technique only amplifies the effective-
ness of the other. Therefore, we combine them into one solid
defense called “Heterogeneous-ISA Program State Reloca-
tion”(HIPStR).

The defense leverages, in this particular implementation,
a heterogeneous-ISA CMP composed of a low-power ARM
core and a high-performance x86 core, that each run a virtual
machine capable of performing program state relocation. To
continue to reap the full performance/energy benefits of the
heterogeneous-ISA CMP, we perform task migration only
when an application phase change profits from migration to
a different ISA. Additionally, we perform non-deterministic
execution migration between the two ISAs only when the
PSR runtime detects a possible attempt to compromise secu-
rity.

In our evaluation, we find that a code cache miss resulting
from an indirect control transfer (including returns) is one
of the key characteristics of a possible security breach. A
code cache miss could result from one of two scenarios. In
the legitimate execution scenario, the jump target is valid,
but has not been translated yet (compulsory miss), or a
translation for it was previously evicted from the code cache
(capacity miss). In an attack scenario, the jump target points
to a ROP gadget, and therefore a mapping does not exist in
the PSR data structures. The PSR virtual machines make no
effort to distinguish between the two scenarios. They instead
migrate execution to a different ISA (with some probability)
on every indirect control transfer that misses the code cache.

Like any JIT system with a sufficiently large code cache,
one would expect code cache misses to be infrequent once

the application reaches a steady state in execution. There-
fore, legitimate execution should experience no meaningful
degradation in steady state performance. Furthermore, we
perform multiple translations, one for each ISA, when an in-
direct control transfer results in a compulsory miss, further
reducing miss events.

In theory, an attacker could avoid migrating to a differ-
ent ISA by using gadgets that are already translated indirect
jump targets or function call sites, for which the PSR vir-
tual machines already have a mapping in their internal data
structures. In our evaluation, we find that the number of such
gadgets is insufficient even for the simplest execve exploit.

4. Assumptions and Threat Model

JIT Engine. We model a JIT engine such as a browser envi-
ronment that performs dynamic binary transformations. Like
most browser environments and other code randomization
defenses [35, 36] that employ dynamic binary instrumenta-
tion, we assume that the JIT engine is checked for vulnera-
bilities and its address space is protected by memory protec-
tion mechanisms such as code signing [78], sandboxing [79],
and Intel Software Guard Extensions (SGX) [80].

Fine-grained Randomization. We require no fine-grained
randomization techniques (including ASLR) to protect our
system, although they would only further strengthen the sys-
tem since HIPStR is orthogonal to most existing defense
mechanisms.

Complete Disclosure. We assume that the attacker has
full knowledge of the inner workings of our defense mecha-
nisms. We also assume that the attacker has unfettered access
to the binary, source code, and complete control flow graph
of the program in execution. Consequently, the attacker has
a complete list of all potential ROP/JOP gadgets in the bi-
nary, and is capable of mounting attacks ranging from classic
ROP [20] to just-in-time code reuse (JIT-ROP) [45] attacks.

Just-in-time Code Reuse. In addition to the ability to
snoop into a program’s memory, we assume the program in
execution exhibits one or more vulnerabilities that allow an
attacker to (a) write to memory (by means of a stack/heap
based overflow), and (b) read an arbitrary number of bytes
from any memory location, using a single leaked memory
disclosure.

Brute Force Attacks. We also assume that the system is
susceptible to brute force attacks such as Blind-ROP [46].
To this end, we model a system as described by Shacham,
et al. [43] that assumes a program executing as a child
thread, whose parent re-spawns it upon on a crash. We do not
assume any defense mechanism that monitors the frequency
of such an event to detect ROP attacks. We instead use it as a
metric to demonstrate the effectiveness of PSR against brute
force.

5. Design and Implementation

In this section, we present the design and implementation
details of Program State Relocation, discuss how our sys-

tem behaves under different execution scenarios, and finally
describe techniques to optimize our system for performance.

5.1 Program State Relocation

As discussed in Section 3, Program State Relocation is a set
of transformations that relocate program state (registers and
stack objects) within the same ISA. In our implementation,
these transformations essentially randomize calling conven-
tions, register allocation, and stack slot coloring. While most
of these transformations can be accomplished by a mere
change in the addressing mode, some transformations (e.g.,
procedure call/return) are slightly more involved and might
require insertion of a small number of move instructions.

Addressing Mode Transformation. Each instruction in
a basic block is modified to access its source and destination
operands at their new locations, as specified by the function’s
relocation map. In most cases, this transformation is rather
trivial and involves mere changing of addressing modes. If
the ISA does not expose a certain addressing mode, the PSR
virtual machine emulates it using additional instructions and
register temporaries. For example, owing to the variety of
addressing modes in x86, we use additional instructions only
when more than one operand of an instruction is relocated to
memory.

Procedure Call Transformation. The PSR virtual ma-
chine instruments all procedure call instructions to perform
argument relocation and register spill/restore as specified by
the callee’s relocation map and the target ABI, respectively.
As an optimization, the PSR virtual machine eliminates any
redundant caller/callee register save and restore instructions.
Furthermore, the virtual machine allocates 2 to 16 pages of
randomization space on the stack in addition to the space
already used by the callee’s locals, temporaries, and spills,
effectively providing 13 to 16 bits of entropy for every reg-
ister or memory access. Note that return addresses are also
relocated to random offsets, and therefore even a nop gadget
that just performs a return incurs an entropy of at least 13
bits.

One of the biggest challenges with procedure call trans-
formation is to preserve the live-ins and live-outs across
function call sites, and correctly compute the caller/callee
saves upon every function invocation. We take advantage of
a single basic block look-ahead liveness analysis to accu-
rately compute this information, and incorporate them into
the randomized calling convention. A major source of ROP
gadgets include the callee restore sequence that pops a bunch
of callee save registers before returning back to the caller. To
circumvent this, we perform a randomized scatter of callee
saves (spray callee saves to random locations on the stack) at
the function call site, and a randomized gather after return.

Indirect Control Transfer. Like any DBT system [76,
77], the PSR virtual machine traps all indirect jumps into
the translator. This ensures there exist absolutely no indirect
jumps translated into the code cache. As a software fault iso-
lation measure, we terminate the process in case we find an
indirect jump target within the code cache’s address range.

Similarly, we disallow pointers to the code cache to exist as
function pointers or return addresses on the stack. We handle
function pointers in the same way as indirect jumps.

For function returns however, we always push the source
return address on the stack, and take advantage of the return
address table (RAT) that contains a mapping from source
address (address of the function call site in the native binary)
to target address (address of the function call site in the code
cache). The call macro-op in the processor is modified to
update the RAT with the right mapping, while the return
macro-op is modified to perform return address translation
as an extra step with a 1-cycle penalty. Upon a RAT miss,
we conclude that there was a code cache miss and trap into
the translator, for re-translation of that basic block.

5.2 PSR-aware Execution Migration

Our migration policy allows execution migration across het-
erogeneous ISAs in two specific scenarios. First, we mi-
grate execution whenever an application phase change or
the processor’s current operating condition demands migra-
tion to another core. This is essential because it preserves
the performance and energy advantages of a heterogeneous-
ISA CMP. On the other hand, we also migrate execution, al-
though probabilistically, when the PSR virtual machine sus-
pects a security breach (specifically, when an indirect control
transfer results in a code cache miss).

Prior work on heterogeneous-ISA execution migration
suggests that we can be migration-safe at only 45% of the
basic blocks [15]. To support instantaneous migration, they
employ dynamic binary translation until a point of execution
is reached, where the stack can be safely transformed. This
implies that a ROP exploit that is composed entirely out
of the remaining 55% of the basic blocks could completely
bypass instruction set randomization.

To circumvent this, we re-purpose the original multi-ISA
compilation infrastructure to support an on-demand execu-
tion migration. In essence, we transform only those objects
on the stack that are absolutely necessary for executing in-
structions until the next control transfer (jump, call or re-
turn), and revert back to the original ISA to execute the next
basic block. By doing so, we manage to be migration-safe
78% of the time. Furthermore, we completely avoid jumps to
unintentional gadgets upon a code cache miss. We do this by
taking advantage of an attack detection unit that disassem-
bles from the last seen nearest address (or function bound-
ary) to the program counter, up until the program counter
itself. This is a minor change to the PSR virtual machine,
which already does sophisticated liveness analysis.

Finally, we ensure that our migration strategy is PSR-
aware, which means we not only transform an object from
one ISA-form to another, but we fetch the object from its
randomized location on one ISA and move it to its new
randomized location on the other ISA.

5.3 Execution Scenarios

Legitimate execution. In a legitimate execution scenario,
the procedure call transformation ensures that functions are

always presented with relocated arguments. Furthermore,
basic blocks are also presented with relocated live-ins since
execution starts at the intended entry point of the function,
thereby preserving the integrity of legitimate program exe-
cution.

Stack Unwinding. Libraries such as libunwind rely on
compiler generated stack frame layout information to un-
wind the stack in exceptional scenarios such as setjmp and
longjmp, and C++ exceptions. PSR seamlessly works with
setjmp and longjmp due to the temporary register spill/re-
store, performed as a part of the procedure call transforma-
tion.

However, C++ exceptions and other debugger routines
unwind the stack frame-by-frame, inspecting stack objects
at each frame, until the unwind target is reached. Perform-
ing PSR on such routines might lead to inconsistent pro-
gram state. To prevent such inconsistencies, the PSR vir-
tual machine instruments these unwind routines to use the
same relocation map as the function that owns the frame
being processed. This guarantees that frame objects are al-
ways accessed from their appropriate relocated addresses, ir-
respective of the control flow. Furthermore, we force migra-
tion (and thus stack transformation) in the rare event when
a longjmp is taken, but the corresponding setjmp was per-
formed on a different ISA.

ROP attack. In the event of a ROP attack, the buffer over-
flow itself happens at a relocated stack address. Therefore,
there is no guarantee that the return address is overwritten
with the gadget address. In case the attacker manages to suc-
cessfully overwrite the return address, she will find that the
gadget at that address fails to work as intended. This is be-
cause the PSR virtual machine dynamically transforms every
instruction in that gadget to access data from their random-
ized locations. Note that this is not just true for ROP attacks,
but hold for jump-oriented programming, v-table hijack, and
other variants. PSR inherently defeats return-into-libc be-
cause of the randomized calling conventions.

Crash/Reboot scenarios. To guarantee high quality
of service and robustness, most servers re-spawn worker
threads upon a crash or a reboot. Several brute force at-
tacks such as Blind-ROP exploit this property of servers
to mount repeated attacks until they become compromised.
These attacks typically bank on using information leaked
in a previous attempt, in order to reduce the overall time-
to-attack. This is possible because a process randomized at
load-time typically does not get re-randomized every time it
spawns a thread. However, a PSR virtual machine performs
randomization at run-time, which means we have the ability
to re-randomize upon re-spawn. Note that this extends to the
PSR virtual machines on both ISAs. Therefore, each time
a worker thread re-spawns, the attacker is presented with a
re-randomized version of the code cache on both ISAs.

5.4 Performance Optimizations

Machine Block Placement. As with any JIT engine, we
take measures to carefully place translated basic blocks in

the code cache, so that we incur as few conflict misses in the
instruction cache as possible. To further improve the instruc-
tion cache performance and fetch bandwidth, we align tight
single-entry single-exit loops to cache block boundaries.

Branch Inlining and Superblock Formation. Next, we
compose our translated basic blocks into superblocks that
have a single entry-point, but multiple exit-points. We form
superblocks in two steps. First, we fold branches whenever
possible. This includes both direct unconditional branches
and fall-through cases in conditional branches. Second, we
avoid backward branches by inlining a direct branch instruc-
tion. Note that this results in code duplication, but it both
improves the locality in the instruction cache, and reduces
pressure on the branch predictor.

Global Register Cache. While PSR provides extremely
high entropy, the sheer number of stack operations could po-
tentially cause severe performance degradation. To optimize
for performance, we use a global register cache that holds the
most frequently used registers that are relocated to stack ob-
jects. We mandate that this cache be only three entries long
so that we provide high performance in tight loops, and at
the same time provide security guarantees by still spilling
frequently to random locations.

PSR with a Register Bias. In this final optimization, we
perform PSR with a register bias, i.e, at all times, we ensure
at least three registers are always relocated to other registers,
albeit randomized for each function.

5.5 Prototype Implementation of PSR

Owing to the complex addressing modes in x86 and the
possibility of unintentional gadgets (unaligned sequence of
bytes that end with the byte ¢3 indicating a ret opcode), x86
not only exhibits greater susceptibility to vulnerabilities, but
also presents greater challenges in terms of design and im-
plementation. Specifically, we note that the attack space on
ARM is 52X smaller than x86 (measured using Galileo [20]
ported to ARM), since ARM enforces strict alignment of in-
structions. Moreover, the simplicity of the instruction set and
lower register pressure on ARM facilitate a smaller engineer-
ing effort and better opportunity for performance optimiza-
tion. Therefore, we choose to implement our more complete
PSR prototype, and do most of our PSR measurements, in
x86. By doing so, we not only demonstrate high coverage
(as the vast majority of the gadgets exist in the x86 code),
but also report conservative estimates in both performance
and security evaluation.

6. Methodology

Security Evaluation. An important characteristic of a secu-
rity attack is that it requires the victim program to expose a
reasonable attack surface to exploit. In the context of ROP,
the attack surface is represented by the number of gadgets
available in a program that facilitate the construction of a
successful exploit. The goal of every randomization defense
is to reduce the attack surface (both in terms of availabil-
ity and functionality), in order to limit the attacker’s abil-

Algorithm 1 Brute Force Simulation

R={r1, 72 ... 7 } /* Set of m registers to load. */

P = /* Set of successfully populated registers. */

X = () /* List of chosen gadgets for the attack. */

Y = () /* List of return address locations for chosen gadgets. */
A(g) is the randomized return address for gadget g

for all i = 1tom do
7; is the register to populate
find g; in G s.t. g; populates register 7,
does not clobber any register s in P, and
A(gj) = min A(gk)

PN nhwe

9: P=P+{r;}

10: X =X+{j}

11: Y=Y +{A(g;)}
12: end for

13: Let B be the number of attempts to populate all registers, then
for an average frame size of f
14: B=Y[0] + £.X[0] + nf.Y[1] + nf2. X[1] +... + n® f4. X[3]

ity to construct meaningful exploits. In our evaluation, we
not only subject our defense to state-of-the-art attack mech-
anisms [19, 21, 45, 47, 48], but also measure its effectiveness
against potential attacks that are computationally beyond the
reach of today’s attacker. For each attack, we report the de-
gree to which the attack surface is reduced by our technique.

We use the ‘Galileo’ algorithm described by Shacham,
et al. [20] to mine a benchmark for every possible instruc-
tion sequence that ends with a return instruction. Since ev-
ery exploit requires some program state in the form of ei-
ther registers or stack objects, we designate any gadget that
successfully populates a register with an attacker supplied
value from the stack as viable. We evaluate every gadget
for its viability on a system, without and with PSR, to mea-
sure the attack surface for four major classes of attacks: (a)
classic ROP, (b) brute-force, (c) JIT-ROP, and (d) tailored
heterogeneous-ISA attacks to defeat HIPStR.

Owing to the sheer number of stack locations available
for program state relocation, the number of possible man-
ifestations of a gadget explodes. To evaluate the system
against brute force attacks while keeping the experiment
tractable, we analyze each gadget to gather data about ev-
ery perturbation it produces on the state of the program,
at a randomly chosen point in its execution. We then sim-
ulate a brute force attack by running this data through Algo-
rithm 1. Cheng, et al. [81] showed that the shortest aligned
gadget chain generated by gadget compilers such as Q [57]
is 17, but to establish the effectiveness of PSR, we con-
sider a much smaller four-gadget shellcode exploit that per-
forms the system call execve(), which in theory should
be easier to brute force by several orders of magnitude.
Although the run-time nature of PSR transformations in-
volve re-randomization upon crash, to keep the experiment
tractable, we make the conservative assumption that a failed
attempt does not result in re-randomization, and thereby tip
the scales in the attacker’s favor.

Algorithm 1 simulates a brute force attack to populate the
four registers (eax, ebx, ecx, and edx) necessary to perform
the execve() system call with attacker provided values on

ARM core
Frequency 2 GHz I cache 32 KB, 2 way
Fetch width 2 D cache 32 KB, 2 way
Issue width 4 ROB size 20 entries
LQ/SQ size 16/16 entries Functional Int ALU(2), IntMult/Div(1),
Units FP ALU/Mult/Div(2)
x86 core
Frequency 3.3 GHz I cache 32 KB, 2 way
Fetch width 4 D cache 32 KB, 2 way
Issue width 4 ROB size 128 entries
LQ/SQ size 48/96 entries Functional Int ALU(6), Mult/Div(1),
Units FP ALU/Mult/Div(2), SIMD(2)

Table 1. Architecture detail for ARM and x86 cores

the stack. On a system protected by PSR, all program state
(registers and stack objects, including the return address) is
relocated to a random register or a stack location. Therefore,
such an attack should brute force three independent variables
in the system: (a) the gadget to execute, (b) relative posi-
tion(s) of data on the stack, as required by the gadget, and
(c) relative position of the return address on the stack, re-
quired to chain the next gadget. The attacker should brute
force the gadget itself, because it is difficult to determine the
potential viability of a gadget that will inevitably be subject
to PSR. Therefore, we brute force every gadget discovered
by the Galileo algorithm. The data for each gadget (the value
to load into a register) and the return address, both share the
same stack frame. In an unsecured system their locations can
be easily determined, but with PSR, they can lie anywhere
within a stack frame.

To maximize the success of a gadget, our attack sprays
the data for the gadget on the entire stack frame and brute
force the location of the return address within the frame.
We model our attack to populate one register at a time, in
order to spray an entire stack frame with the data for one
register, thereby increasing its chances of being read by a
gadget. Since we assume the attacker has insight into the
inner workings of PSR, we assume a frame size of 8KB,
at which PSR provides substantial security benefits at an
acceptable degradation in performance. In our algorithm,
we also account for register and stack clobbering to ensure
that a gadget does not destroy previously established (by
an earlier gadget in the exploit) state. The algorithm stops
searching for more viable gadgets as soon it finds a four-
gadget shellcode exploit.

Performance Evaluation. We use the SPEC CPU2006
integer and floating-point C benchmarks to evaluate the
proposed defense. We exclude gcc and sjeng from this set
because they perform dynamic memory allocation on the
stack either using the alloca library function, or by pass-
ing variable-length array parameters. While our multi-ISA
compilation and runtime infrastructure is capable of work-
ing with variable-size stack frames, our PSR implementation
does not support this feature yet. All benchmarks are com-
piled using an LLVM-based multi-ISA compiler at the -O3
optimization level. To model a heterogeneous-ISA CMP,
we use the gem5 [82] architectural simulator. The processor
model of the ARM core is based on the low-power Cortex A-

B Obfuscated Gadgets M Unobfuscated Gadgets

Number of Gadgets
(in thousands)
N
)

Q N X & N > 2
IS N R
© N4 K
&
A\

Figure 3. Classic ROP Attack Surface

M Eliminated Gadgets B Surviving Gadgets

140
120

=
N B OO
O O OooOo

Number of Gadgets
(in thousands)

o

Qv Ng S & NG) (2
SO S R g
€ S S AN

N

Figure 4. Brute Force Attack Surface

9, while the x86 core is modeled after the high performance
Intel Xeon. Table 1 shows the details of each core.

To evaluate the steady state performance and study the
effect of various contributing factors, we simulate a portion
of the program’s execution at different optimization and en-
tropy levels, with different code cache and hardware Return
Address Table (RAT) sizes, as follows. We fast forward exe-
cution for the first one billion instructions to skip initializa-
tion code, and perform cycle accurate simulation for another
one billion instructions[83], while running in the context of
a PSR virtual machine and with heterogeneous-ISA migra-
tions enabled.

To evaluate the migration overhead at random execution
points, we skip the initalization phase and fast forward exe-
cution of each benchmark to a random checkpoint and force
migration to a different ISA, and report results averaged
across ten random checkpoints.

7. Evaluation
7.1 Security Evaluation

Classic ROP-Style Attacks. Figure 3 shows the extent to
which PSR reduces the attack surface for classic ROP-style
attacks, including return-into-libc, jump-oriented program-
ming, and v-table hijack. We observe that the sheer amount
of randomization that each gadget undergoes guarantees that
only a very small portion of the attack surface remains unal-
tered. To be precise, PSR reduces the attack surface of clas-
sic ROP by an average of 98.04%. We note that although the
remaining 1.96% is unobfuscated by PSR, the attacker has
no way of determining which gadgets they are beforehand,
since their randomized version is only generated on execu-
tion, thereby rendering classic ROP attacks infeasible.

Benchmark | Randomizable | Entropy | Attemp Attemp
’ ‘ Params (avg) (no reg-bias) | (reg-bias) ‘

bzip2 6.76 88 9.11x10% | 234x10%
gobmk 6.53 85 2.34x 1034 2.87 x 10%%
I 6.69 87 137 x 1034 1.16 x 1034
1bm 6.92 90 3.33x 102 3.90 x 10%*
libquantum | 6.76 88 1.05 x 1034 6.45 x 1033
mcf 6.69 87 3.10x 10%3 171 x 1034
milc 6.46 84 1.86 x 1034 2.92x 1034
sphinx3 6.92 90 1.14x 1034 8.68 x 1033

Table 2. Inferences from Brute Force Simulation

Brute Force Attacks. As illustrated in Figure 3, PSR
modifies a majority of the gadgets that were previously avail-
able for ROP. These gadgets, by virtue of PSR’s transfor-
mations, have either been obfuscated in a way that they no
longer perform the attacker intended action, or have been
completely eliminated. The former of these are viable candi-
dates for a brute force attack since they perform useful com-
putation, just not what an attacker expects them to. Even un-
der the assumption of full memory disclosure, it is impossi-
ble to determine the transformations that will be applied on a
gadget, without executing it. Also viable for a brute force at-
tack are any gadgets introduced by the randomization itself.
The attack surface for brute force comprises every gadget
available in the program, since there is no way to ascertain
which ones will transform to be viable gadgets. As shown
in Figure 4, we observe that a sizable portion (an average of
15.83%) of all gadgets are viable for brute force, and there-
fore require thorough evaluation.

Table 2 shows the results of our brute force simulation
described in Section 6. We observe that PSR successfully
renders brute force attacks computationally infeasible, by a
considerably large margin. We find that, on an average, a
gadget has between six and seven randomizable parameters
which could potentially include registers, stack objects, and
at least one address on the stack to place the (return) ad-
dress of the next gadget. In our configuration of 8KB sized
stack frames, each parameter has 213 randomizable states,
resulting in an average entropy of 87 bits per gadget. Even
if a vulnerability allowed an indefinite number of attempts,
with each attempt only taking a nanosecond, we find that it
is computationally infeasible to perform such a brute force
attack with state-of-the-art computing infrastructure. In fact,
such an attack would remain computationally infeasible on
future processors targeted at exascale computing.

Just-In-Time Code Reuse. Figure 5 shows the reduction
in attack surface for each benchmark under both single-
ISA and heterogeneous-ISA PSR. Owing to the just-in-time
nature of PSR, only the steady state program code that has
already been randomized by PSR and is present in the code
cache remains vulnerable to JIT-ROP. We find that the
number of gadgets already randomized by PSR accounts
for only 1.45% of all classic ROP gadgets and 1.92% of
those viable for brute force, thereby severely constraining
the attack surface. Note that a majority of gadgets are now
undiscoverable, since they lie outside the code cache.

=
[¢)]

[
IS

JIT-ROP Attack Surface
(in thousands)
2.
1SRN

A O

¥ Eliminated Gadgets M Surviving Gadgets

Figure 5. JIT-ROP Attack Surface on (a) PSR, (b) HIPStR

M x86 to ARM B ARM to x86

100%

80% -
60% -
40% -
20%

Migration-safe Basic Blocks

0%

Figure 6. Percentage of Migration-Safe Basic Blocks

Although the attack surface has been considerably re-
duced, the surviving 294 gadgets could potentially be enough
to mount a JIT-ROP attack. Recall from Section 3 that the
PSR virtual machines suspect a security violation when an
indirect control transfer (including returns) misses the code
cache, and subsequently migrate execution to a different
ISA, albeit probabilistically. Note that the PSR virtual ma-
chine can find in its internal structures only those indirect
jump targets and function call sites that have been translated
so far, and will result in a code cache miss for all others.
Any surviving gadget that is viable for JIT-ROP must ide-
ally avoid migration to a different ISA, and therefore begin
at an already translated indirect jump or function call site.
This imposes serious limitations on the JIT-ROP attack sur-
face that has already been weakened by PSR.

We find that out of the 294 surviving gadgets from PSR,
267 gadgets cause a security breach violation in PSR virtual
machine, thereby triggering a probabilistic migration to a
different ISA. This leaves the attacker with only 27 gadgets,
on average, that do not flag a violation and could potentially
bypass migration to a different ISA. Furthermore, as shown
in Figure 6, we note that our infrastructure is capable of
being migration-safe on an average of 78% of the time, in
either direction. This implies that gadgets in the remaining
22% of the basic blocks are still viable candidates for JIT-
ROP. However, we find that these remaining gadgets are
insufficient to even construct a four-gadget shellcode exploit,
let alone complex exploits.

Tailored attacks. To further explore the synergy of the
HIPStR components, we compare the combined entropy

_==rlsomeron —+—Heterogeneous-ISA PSR

“©-HIPStR

1024
512 - * PSR+lsomeron

256 -

Jury

N

0o
I

2
L6
> 32 -
Qo
S 16 -
5
S 8

4 |

2

1 : : : :

1 2 3 4 5 6 7 8 9 100 11 12
Length of gadget chain
Figure 7. Entropy Comparison

1024
® 512
:% 256 -
S 128 -
w
S w 64
-
S &% 32 Isomeron

k]
E S 16 —<PsR
o
E 8 | —e-Heterogeneous-ISA
] 4 7 -m-psR + Isomeron
% 2
2 HIPStR
1 : : : : : : : : : :

0O 01 02 03 04 05 06 07 08 09 1

Diversification Probability

Figure 8. Effect of diversification on attack surface

of HIPStR with the two individual components of HIPStR
(PSR and heterogeneous-ISA migration) alone, as well as a
hybrid of Isomeron and our PSR approach (See Figure 7).
We make two important observations. First, any system that
implements only Isomeron or only Heterogeneous-ISA mi-
gration suffers from extremely low entropy, which cannot be
amortized unless the gadget chain is long enough. For ex-
ample, every one out of as low as 256 attempts will succeed
for a gadget chain that is 8 gadgets long. Second, the just-
in-time nature of PSR inherently enables re-randomization
upon a crash. Therefore, the attacker is always presented
with a re-randomized version of the code cache on both
ISAs, for every brute force attempt. Although PSR by itself
is susceptible to JIT-ROP, this characteristic of PSR makes
brute forcing a JIT-ROP attack significantly harder on a sys-
tem that implements both diversification and PSR.

This might suggest that a system implementing a combi-
nation of PSR and Isomeron is as effective as HIPStR. How-
ever, we note that entropy as a metric by itself does not com-
pletely capture the effect of randomizing the instruction sets.
To observe this effect, we turn to tailored attacks that bypass
both same-ISA (Isomeron) and heterogeneous-ISA diversifi-
cation. An attacker who is aware of the diversification could
construct exploits that interleave gadgets from both the orig-
inal and the diversified versions. For example, on HIPStR,
one could craft an exploit that alternates gadgets between
x86 and ARM, such that the all meaningul computation is
performed by x86 gadgets, while the ARM gadgets are all
nops that switch execution to x86 without clobbering already

Level | Optimizations
-00 No Optimization.
-01 Machine Block Placement,

Branch Inlining and Superblock Formation.
-02 -O1 optimizations, Global Register Cache.
-03 -O2 optimizations, PSR with a register bias.

Table 3. Performance Optimizations for PSR

HPSR-01 M PSR-02 PSR-O3 M Native Performance
o 100%
o
g 80%
‘;c;, 60%
& 40%
[
2 20%
o
g 0%
Qv N < & A) 2
~o‘>Q 60@ @@Q/ N 6‘0@ &8 \'\"‘d. e}’b%
Y AN 0?% (,Q z§

Figure 9. Performance at different optimization levels

established state. Another example of such a tailored attack
would be to use those gadgets that are unaffected by diver-
sification, i.e, those gadgets that perform the same intended
malicious operation regardless of what ISA/software version
they execute.

Figure 8 examines the JIT-ROP attack surface of each
technique in the face of such tailored attack mechanisms.
When the probability of diversification (the probablility of
switching ISAs or program variants between gadgets) is
zero, such an attack surface will include all gadgets present
in the code cache. As the diversification probability in-
creases, the attacker would find it increasingly harder to
brute force a JIT-ROP attack.

We note that the system implementing both PSR and
Isomeron is as effective as HIPStR when the diversification
probability is zero, but the two systems rapidly diverge in
their effectiveness as the probability increases. In fact, at
a probability of one, at which we diversify execution for
every gadget, HIPStR manages to have an average of just
two surviving gadgets in its attack surface, while the attack
surface of the system implementing PSR and Isomeron still
comprises hundreds of gadgets. It is worth noting here that
on HIPStR, we failed to find any surviving gadgets in five out
of the eight applications we benchmark, thereby completely
thwarting such tailored attacks.

Aside from these eight SPEC applications, we also eval-
uate the effectiveness of HIPStR on the network facing dae-
mon httpd, a classic target of ROP attacks. Our evalua-
tion shows that the attack surface of httpd is composed
of 169,272 gadgets. PSR successfully obfuscates 99.7% of
the gadgets, requiring 1.8x103? attempts to brute-force (still
computationally infeasible). Furthermore, while 84 gadgets
are available for JIT-ROP, only two survive heterogeneous-
ISA migration. These are insufficient to generate even the
simplest shellcode exploit.

In our evaluation, we find that it is more likely to find
large gadgets that populate multiple registers at a time, and

W pSR-S8

H pSR-S16 PSR-S32 B pPSR-S64

100%
80%
60%
40%
20%

0%

Relative Performance

Figure 10. Effect of additional stack memory overhead

are unaffected by diversification on the same ISA, rather than
different ISAs. Note that our experiments only measure the
number of surviving gadgets in the face of such tailored at-
tacks. We expect that chaining together these gadgets to craft
an exploit payload is a much more daunting task, because not
only is brute-forcing such an attack under PSR extremely
hard, but heterogeneous-ISA migration involves stack trans-
formation that could potentially clobber the exploit payload
on the stack.

The strength of PSR lies in its ability to defeat brute force
attacks, while simultaneously reducing the attack surface. It
amplifies the entropy of heterogeneous-ISA migration mak-
ing a brute force attack on the combined defense infeasible.
Conversely, heterogeneous-ISA migration has the ability to
shield PSR from a JIT-ROP attack attempting to bypass ran-
domization. Together, they form a formidable defense.

7.2 Performance Evaluation

Steady State Performance. Figure 9 shows the steady state
performance overhead of PSR and the effect of each per-
formance optimization. We do not gain a significant perfor-
mance boost from the O1 level of optimizations that we ap-
ply to improve the instruction cache performance. However,
we observe an average of 13% improvement in performance
due to a small global register cache that holds just 3 regis-
ters. This, in large part, is due to the fact that short and tight
loops operate on a small set of input registers, but dominate
most of a program’s execution. Finally, we find that operat-
ing PSR in a register-bias mode can further improve perfor-
mance by an average of 5.5%, thereby reducing the over-
all performance degradation from native execution to just
13.14%.

Since PSR relies on large stack frames to provide higher
entropy, it is important to measure the performance effects
due to the extra stack memory used. Figure 10 shows the
steady state performance overhead at different entropy lev-
els. The performance only drops by an average of 2.96%
even after expanding individual stack frame sizes by as much
as 64KB. This is because the stack frames become very
sparse, and large empty spaces between items (e.g., larger
than a cache line) do not place pressure on the cache.

PSR takes advantage of a return address table (Section 3)
to protect the code cache from becoming compromised. Fig-
ure 11 shows the effect of the RAT size on performance. We

8%

T

2 -=-bzip2 gobmk =~hmmer

=

§ 6% 7 —e-pm libquantum mcf

[e) S .

g 4% milc =+=sphinx3 ®-average

c

©

£ 2%

£ —

Q2 0% —— g ¢ * *
32 64 128 256 512 1024 2048

RAT Size
Figure 11. Effect of RAT size on Performance

=7 B ARM to x86 ¥ x86 to ARM

w

E¢

B s

£ 4

[

> 3

<)

g 2

s 1

o -_,_——_,_i:

&0 ‘

= . N & N > <

$¥ 6°& & « 5‘0@ &8 S ef"z’%

% AN 09'0 Y »

Figure 12. Migration Overhead

incur an average of 0.37% performance overhead even with
as small as a 32-entry RAT. In fact, we observe no notice-
able degradation in performance with a RAT that can hold
just 512 entries. This is because the distance between a call
and a return instruction is generally so short that we seldom
incur a RAT miss.

Migration Overhead. Figure 12 shows the state transfor-
mation overhead due to heterogeneous-ISA process migra-
tion. We report an average migration overhead of 909 mi-
croseconds when migrating from ARM to x86, and 1.287
ms in the other direction, resulting in an overall baseline
migration overhead of 0.32% resulting from the migrations
initiated to improve performance. Our migration policy en-
sures that we switch ISAs only when a program’s ISA pref-
erence changes as it enters a new program phase, or when the
PSR virtual machine suspects a security breach, i.e, when we
encounter an indirect control transfer that results in a code
cache miss.

Figure 13 shows the effect of code cache size on migra-
tion overhead. We record zero indirect control transfers that
miss a code cache as small as 768 KB, resulting in no mea-
surable overhead for security-induced migrations. In steady
state execution, it is highly unlikely that we return to a func-
tion whose translation has been evicted, or we make an indi-
rect jump or a function pointer call to an evicted region. For
example, gobmk makes 65,746 function pointer calls within
a span of one second, but none miss the code cache.

Finally, Figure 14 compares the performance of HIPStR
with Isomeron, the only other technique that defends against
JIT-ROP, along with a system that implements both PSR and
Isomeron, for the six common applications that we bench-
mark. Since Isomeron invokes execution path diversification
for each function call and return, they report a higher perfor-

5%

T

s —x86 to ARM

< %

£ 4% ARM to x86

> 30, . I

8 3% —Baseline Migration Overhead

<

o 2%

£

R

00 ¥
T O 0O N < OVWVO NI OO N T VWO NI O
ON TS O N—T OO DTN OOINTFTMNANN—dOD
N < OO NS OMNOOHEA M WLMNOCEA N WOLNSNSO O

A A A AT AN NN NN OO Nmon S

Code Cache Size (KB)

Figure 13. Effect of code cache size on Performance

100%

g 95% -

£ 90% |

E 85% | ".\.\.

S 80% - — —
T 75% | @ & -
% 70% - -®-lsomeron

£ 65% | ~®PSR+Isomeron

©

o

=

60% - —+HIPStR (with 256KB code cache)

55% - -m~HIPStR (with 2MB code cache)
50% T T T T T

0 01 02 03 04 05 06 07 08 09 1
Diversification Probability

Figure 14. Performance Comparison with Isomeron

mance overhead. In fact, they mention that this degradation
in performance is expected since their program shepherding
renders CPU optimizations like branch prediction ineffec-
tive [35]. As the diversification probability increases, HIP-
StR performance only slightly decreases with the smaller
code cache, but still manages to provide higher performance
than both Isomeron, as well as the combination of PSR and
Isomeron. Overall, HIPStR outperforms Isomeron by an av-
erage of 15.6% while simultaneously providing signficantly
higher entropy, and thereby higher resistance to brute force,
JIT-ROP, and tailored attacks that bypass diversification.

8. Conclusion

Heterogeneous-ISA CMPs have been shown to provide sig-
nificant performance and energy gains. In this work, we
showcase their security benefits through a novel defense
called HIPStR (Heterogeneous-ISA Program State Relo-
cation) that combines dynamic randomization of program
state with non-deterministic process migration between
heterogeneous-ISAs. We find that HIPStR outperforms the
state-of-the-art JIT-ROP defense by 15.6% while providing
greater security guarantees.

Acknowledgements

The authors would like to thank the anonymous reviewers
for their helpful insights. The authors are particularly grate-
ful to Arvind Krishnaswamy, Koichi Yamada, and Rajan
Palanivel for their numerous suggestions during the early
days of PSR’s formulation, and for their contributions to the
United States Patent US009135435B2 [84]. This research
was supported in part by NSF Grant XXXXXXXX.

References

[1] R. Kumar, D. M. Tullsen, N. Jouppi, and P. Ranganathan,
“Heterogeneous chip multiprocessors,” Computer, vol. 38,
no. 11, 2005.

[2] “Variable SMP - A Multi-Core CPU Architecture for Low
Power and High Performance,” tech. rep., NVidia, 2011.

[3] P. Greenhalgh, “big.LITTLE Processing with ARM Cortex-
A15 & Cortex-A7,” tech. rep., ARM, 2011.

[4] M. Hill and M. Marty, “Amdahl’s Law in the Multicore Era,”
Computer, July 2008.

[5] “2nd Generation Intel Core vPro Processor Family,” tech.
rep., Intel, 2008.

[6] “The future is fusion: The Industry-Changing Impact of Ac-
celerated Computing.,” tech. rep., AMD, 2008.

[7] “The Benefits of Multiple CPU Cores in Mobile Devices,”
tech. rep., NVidia, 2010.

[8] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, “Introduction to the Cell multipro-

cessor,” IBM Journal of Research and Development, July
2005.

[9] L. A. Barroso and U. Holzle, “The case for energy-proportional
computing,” IEEE computer, 2007.

[10] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,

“Towards energy proportionality for large-scale latency-
critical workloads,” in Proceedings of the 41st Annual In-
ternational Symposium on Computer Architecuture, 2014.

[11] G. Varsamopoulos, Z. Abbasi, and S. K. Gupta, “Trends and
effects of energy proportionality on server provisioning in
data centers,” in Proceedings of the 17th Annual International
Conference on High Performance Computing, 2010.

[12] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen, “Single-ISA Heterogeneous Multi-core Archi-
tectures: The Potential for Processor Power Reduction,” in In-
ternational Symposium on Microarchitecture, Dec. 2003.

[13] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas, “Single-ISA Heterogeneous Multi-core Archi-
tectures for Multithreaded Workload Performance,” in Inter-
national Symposium on Computer Architecture, June 2004.

[14] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution mi-
gration in a heterogeneous-isa chip multiprocessor,” in Pro-
ceedings of the Seventeenth International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, 2012.

[15] A. Venkat and D. M. Tullsen, “Harnessing ISA diversity:
Design of a heterogeneous-ISA chip multiprocessor,” in Pro-
ceedings of the International Symposium on Computer Archi-
tecture, 2014.

[16] A.Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichan-

dran, C. Kendir, A. Murray, and B. Ravindran, “Popcorn:
Bridging the Programmability Gap in heterogeneous-ISA
Platforms,” in Proceedings of the 10th European Conference
on Computer Systems, Apr. 2015.

[17] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and
S. Hahn, “Operating system support for overlapping-ISA het-
erogeneous multi-core architectures,” in Proceedings of the

16th International Symposium on High Performance Com-
puter Architecture, Jan. 2010.

[18] D. Lustig, C. Trippel, M. Pellauer, and M. Martonosi, “Ar-
MOR: Defending Against Memory Consistency Model Mis-
matches in Heterogeneous Architectures,” in Proceedings of
the 42nd International Symposium on Computer Architecture,
June 2015.

[19] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applica-
tions,” ACM Transactions on Information and System Se-
curity, 2012.

[20] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in Pro-
ceedings of the 14th ACM conference on Computer and Com-
munications Security, 2007.

[21] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-
oriented programming: a new class of code-reuse attack,”
in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, 2011.

[22] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When
good instructions go bad: generalizing return-oriented pro-
gramming to RISC,” in Proceedings of the 15th ACM con-
ference on Computer and Communications Security, 2008.

[23] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented program-
ming without returns,” in Proceedings of the 17th ACM con-
ference on Computer and Communications Security, 2010.

[24] S. Checkoway and E. W. Felten, “Can DREs provide long-
lasting security? The case of return-oriented programming
and the AVC Advantage,” 2009.

[25] T. Kornau, “Return oriented programming for the ARM ar-
chitecture,” Master’s thesis, Ruhr-Universitat Bochum, 2010.

[26] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in Proceedings of the 12th ACM conference
on Computer and Communications Security, 2005.

[27] C. Cowan, C. Pu, D. Maier, et al., “StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks,”
in Proceedings of the 7th USENIX Security Symposium, 1998.

[28] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: A
detection tool to defend against return-oriented programming
attacks,” in Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, 2011.

[29] H. Etoh, “GCC extension for protecting applications from
stack-smashing attacks,” 2003.

[30] M. Kayaalp, M. Ozsoy, N. Abu Ghazaleh, and D. Ponomareyv,
“Branch regulation: low-overhead protection from code reuse
attacks,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, 2012.

[31] M. Zhang and R. Sekar, “Control flow integrity for COTS
binaries,” in Proceedings of the 22nd USENIX Security Sym-
posium, 2013.

[32] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCa-
mant, D. Song, and W. Zou, “Practical control flow integrity
and randomization for binary executables,” in Proceedings of
the 34th IEEE Symposium on Security and Privacy, 2013.

[33] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song, “Code-pointer integrity,” in USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI), 2014.

[34] Michael Backes and Stefan Niirnberger, “Oxymoron: Making
Fine-Grained Memory Randomization Practical by Allowing
Code Sharing,” in Proceedings of the 23rd USENIX Security
Symposium, Aug 2014.

[35] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Mon-
rose, “Isomeron: Code randomization resilient to (just-in-
time) return-oriented programming,” July 2015.

[36] J. Hiser, A. Nguyen Tuong, M. Co, M. Hall, and J. W. David-
son, “ILR: Where’d My Gadgets Go?,” in Proceedings of the
33rd IEEE Symposium on Security and Privacy, 2012.

[37] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering
code-injection attacks with instruction-set randomization,” in
Proceedings of the 10th ACM conference on Computer and
Communications Security, 2003.

[38] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smash-
ing the gadgets: Hindering return-oriented programming us-
ing in-place code randomization,” in Proceedings of the 33rd
IEEE Symposium on Security and Privacy, 2012.

[39] PaX Team, “PaX address space layout randomization,” 2003.

[40] E. Shioji, Y. Kawakoya, M. Iwamura, and T. Hariu, “Code
shredding: byte-granular randomization of program layout
for detecting code-reuse attacks.,” in Proceedings of the 28th
Annual Computer Security Applications Conference, 2012.

[41] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy x86
binary code,” in Proceedings of the 2012 ACM conference on
Computer and Communications Security, 2012.

[42] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Sur-
gically returning to randomized lib (c),” in Proceedings of

the 25th Annual Computer Security Applications Conference,
2009.

[43] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomiza-
tion,” in Proceedings of the 11th ACM conference on Com-
puter and Communications Security, 2004.

[44] B.-J. Wever, “Internet Explorer IFRAME src&name parame-
ter BoF remote compromise,” 2004.

[45] K. Z. Snow, FE. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi, “Just-in-time code reuse: On the effective-
ness of fine-grained address space layout randomization,” in
Proceedings of the 34th IEEE Symposium on Security and
Privacy, 2013.

[46] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh, “Hacking Blind,” in Security and Privacy, July
2014.

[47] H. D. Moore, “Microsoft Internet Explorer data binding
memory corruption,” 2010.

[48] Solar Designer, “Getting around non-executable stack (and
fix),” 1997.

[49] G. Kyriazia, “Heterogeneous Systems Architecture: A Tech-
nical Review,” tech. rep., 2012.

[50] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.
Gopal, J. Gray, et al., “A reconfigurable fabric for accel-
erating large-scale datacenter services,” in Proceedings of
the 41st International Symposium on Computer Architecture,
June 2014.

[51] D. Allred and G. Martinez, “Maximizing the Power of ARM
with DSP,” tech. rep., Texas Instruments, 2010.

[52] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multipro-
cessor SoC for advanced set-top box and digital TV systems,”
Design & Test of Computers, IEEE, vol. 18, no. 5, 2001.

[53] “Intel IXP425 Network Processor,” tech. rep., 2006.

[54] Qualcomm, “Snapdragon S4 Processors: System on Chip So-
lutions for a New Mobile Age,” tech. rep., Oct. 2011.

[55] “National Vulnerability Database,”

[56] D. Jang, Z. Tatlock, and S. Lerner, “SAFEDISPATCH: Se-
curing C++ virtual calls from memory corruption attacks,” in

Proceedings of the 21st International Symposium on Network
and Distributed System Security, Feb. 2014.

[57] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
Hardening Made Easy.,” in Proceddings of the 20th USENIX
Security Symposium, 2011.

[58] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis,

“Transparent ROP Exploit Mitigation Using Indirect Branch
Tracing,” in Proceedings of the 22nd USENIX Security Sym-
posium, 2013.

[59] C. Cowan, S. Beattie, R. F. Day, C. Pu, P. Wagle, and
E. Walthinsen, “Protecting systems from stack smashing
attacks with StackGuard,” in Proceedings of the 5th Linux
Expo, 1999.

[60] H. Ozdoganoglu, T. Vijaykumar, C. E. Brodley, B. A. Ku-
perman, and A. Jalote, “SmashGuard: A hardware solution to
prevent security attacks on the function return address,” IEEE
Transactions on Computers, 2006.

[61] G.E. Suh,J. W. Lee, D. Zhang, and S. Devadas, “Secure pro-
gram execution via dynamic information flow tracking,” in
Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 2004.

[62] Vendicator, “StackShield: A Stack Smashing Technique Pro-
tection Tool for Linux,” 2001.

[63] I. Evans, S. Fingeret, J. Gonzélez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi,
“Missing the point (er): On the effectiveness of code pointer
integrityl,” in Proceedings of the 36th IEEE Symposium on
Security and Privacy, 2015.

[64] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow
integrity,” in Proceedings of the 24th USENIX Security Sym-
posium, 2015.

[65] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis,
“Out of control: Overcoming control-flow integrity,” in Pro-
ceedings of the 35th IEEE Symposium on Security and Pri-
vacy, May 2014.

[66] E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos, and

G. Portokalidis, “Size does matter: Why using gadget-chain
length to prevent code-reuse attacks is hard,” in Proceedings
of the 23rd USENIX Security Symposium, Aug. 2014.

[67] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking
modern defenses,” in Proceedings of the 23rd USENIX Secu-
rity Symposium, Aug. 2014.

[68] Lucas Davi, Daniel Lehmann, and Ahmad-Reza Sadeghi,
“The Beast is in Your Memory: Return-Oriented Program-
ming Attacks Against Modern Control-Flow Integrity Pro-
tection Te chniques,” in BlackHat USA, Aug 2014.

[69] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose,
“Stitching the gadgets: On the ineffectiveness of coarse-
grained control-flow integrity protection,” in Proceedings of
the 23rd USENIX Security Symposium, Aug. 2014.

[70] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz, “Counterfeit object-oriented programming,”
May 2015.

[71] S. Bhatkar and R. Sekar, “Data space randomization,” in De-
tection of Intrusions and Malware, and Vulnerability Assess-
ment, 2008.

[72] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro,
“Data randomization,” tech. rep., Technical Report MSR-TR-
2008-120, Microsoft Research, 2008.

[73] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda,
“G-Free: defeating return-oriented programming through
gadget-less binaries,” in Proceedings of the 26th Annual Com-
puter Security Applications Conference, 2010.

[74] A.Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioan-
nidis, “ASIST: architectural support for instruction set ran-
domization,” in Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & Communications Security, 2013.

[75] C. Rohlf and Y. Ivnitskiy, “Attacking clientside JIT compil-
ers,” Black Hat, USA, 2011.

[76] J. Smith and R. Nair, Virtual Machines: Versatile Platforms
for Systems and Processes. Morgan Kaufmann Publishers
Inc., June 2005.

[77] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
USENIX Technical Conference, Apr. 2005.

[78] MSDN, “Introduction to code signing,”

[79] J. Ansel, P. Marchenko, U. Erlingsson, E. Taylor, B. Chen,
D. L. Schuff, D. Sehr, C. L. Biffle, and B. Yee, “Language-
independent sandboxing of just-in-time compilation and self-
modifying code,” ACM SIGPLAN Notices, 2011.

[80] Intel, “Software guard extensions programming reference,’
2014.

[81] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng,
“ROPecker: A generic and practical approach for defending
against ROP attacks,” in Symposium on Network and Dis-
tributed System Security (NDSS), 2014.

[82] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt, “The M5 Simulator: Modeling
Networked Systems,” Micro, IEEE, 2006.

[83] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Au-
tomatically Characterizing Large Scale Program Behavior,”
in Proceedings of the 7th International Conference on Archi-

tectural Support for Programming Languages and Operating
Systems, Oct. 2002.

[84] A. Venkat, A. Krishnaswamy, K. Yamada, and R. Palanivel,
“Binary Translation driven Program State Relocation,” in
United States Patent Grant US009135435B2, 2015.

