
(De-)Constructing TLS 1.3

Markulf Kohlweiss1, Ueli Maurer2, Cristina Onete3, Björn Tackmann4, and
Daniele Venturi5

1 Microsoft Research, Cambridge, United Kingdom
markulf@microsoft.com

2 Department of Computer Science, ETH Zürich, Switzerland
maurer@inf.ethz.ch

3 INSA/IRISA, Rennes, France
cristina.onete@gmail.com

4 Department of Computer Science & Engineering, UC San Diego, United States
btackmann@eng.ucsd.edu

5 Sapienza University of Rome, Italy
venturi@di.uniroma1.it

Abstract. SSL/TLS is one of the most widely deployed cryptographic
protocols on the Internet. It is used to protect the confidentiality and
integrity of transmitted data in various client-server applications. The
currently specified version is TLS 1.2, and its security has been analyzed
extensively in the cryptographic literature. The IETF working group is
actively developing a new version, TLS 1.3, which is designed to address
several flaws inherent to previous versions.
In this paper, we analyze the security of a slightly modified version of the
current TLS 1.3 draft. (We do not encrypt the server’s certificate.) Our
security analysis is performed in the constructive cryptography frame-
work. This ensures that the resulting security guarantees are composable
and can readily be used in subsequent protocol steps, such as password-
based user authentication over a TLS-based communication channel in
which only the server is authenticated. Most steps of our proof hold in
the standard model, with the sole exception that the key derivation func-
tion HKDF is used in a way that has a proof only in the random-oracle
model. Beyond the technical results on TLS 1.3, this work also exempli-
fies a novel approach towards proving the security of complex protocols
by a modular, step-by-step decomposition, in which smaller sub-steps
are proved in isolation and then the security of the protocol follows by
the composition theorem.

1 Introduction

SSL/TLS is arguably one of the most widely-used cryptographic protocols se-
curing today’s Internet. It was introduced by Netscape [15] in the context of
protecting connections between web browsers and web servers, but nowadays the
protocol is also used for many other Internet protocols including, e.g., SMTP
or IMAP (for e-mail transmissions) and LDAP (for accessing directories). Flaws

and insecurities in the original design required the protocol to be fixed repeat-
edly; the current version is TLS 1.2 [12]. A preliminary version of TLS 1.3, which
deviates from prior versions considerably, is currently under development [13].
In this paper, we analyze the security of this latest (draft) version of TLS.

1.1 Our Contributions

We prove the security of (a slightly modified version of) the ephemeral Diffie-
Hellman handshake of TLS 1.3 with unilateral authentication, that is, where
only the server has a certificate. We expect that this mode will be used widely
in practice, although recently other modes based on pre-shared keys or Diffie-
Hellman with a certified group element have been added to the draft.

More precisely, we prove that TLS 1.3 in ephemeral Diffie-Hellman mode6
constructs a unilaterally secure channel, that is, a channel where the client has
the guarantee that it securely communicates with the intended server while the
server has no comparable guarantee. The protocol assumes that an insecure
network and a public-key infrastructure (PKI) are available. Our results for TLS
1.3 are in the standard model, with the sole exception that the key derivation
function HKDF is used in a way for which security has so-far only been proved
in the random-oracle model.7

We stress that our result guarantees composability, both in the sense that
multiple sessions of the protocol can be used concurrently, and in the sense that
the constructed channel can safely be used in applications that assume such a
channel. In particular, adding password-based authentication for the client in
the unilaterally secure channel immediately yields a mutually secure channel.

Our proof follows a modular approach, in which we decompose the protocol
into thinner layers, with easier intermediary proofs. The security guarantee of
the entire protocol then follows by composition. In particular:

– Each individual proof consists of a reduction from only a small number of
assumptions,8 and can be updated individually if the corresponding step of
the protocol is altered.

– If a better proof is found for one of the smaller sub-steps, re-proving only
this sub-step immediately results in an improved security statement of the
complete protocol by virtue of the composition theorem.

Modification of the protocol. While in the original draft [13] the server sends its
(PKI) certificate encrypted under preliminarily established keys, we analyze a
version of the protocol in which the certificate is sent in clear. Encrypting the
certificate complicates the security analysis: on the one hand, the symmetric
keys are authenticated by the certificate (as the latter authenticates the server’s
6 Subject to the modification described below.
7 HKDF is used to extract from a Diffie-Hellman group element without a salt. The
only proof of this that we know of relies on random oracles.

8 The ultimate goal in such a modularization is that the proof of each step consist of
only a single reduction, but TLS 1.3 does not allow for this.

key-exchange share); on the other hand, the certificate is protected with the
symmetric keys. Our proof can be modified along the lines of a similar analysis
of IPsec [16], but at the cost of a more complicated formalization.

Limitations of our analysis. Our proof does not cover the notion of (perfect)
forward secrecy; the main reason is that no formalization of this property cur-
rently exists in the constructive cryptography framework we work in. Note that
while our definitions do not model the adaptive corruption of parties, they do
guarantee that the keys can be used in arbitrary applications, which traditional
game-based notions model via so-called key-reveal oracle queries.

Our proof only applies to sessions with a fixed TLS 1.3 version and uses
an abstract formulation of a PKI corresponding to the guarantee that (a) a
client knows the identity of the server with which it communicates; and (b) only
the honest server can get a certificate for this identity [22,24]. This means that
some types of attacks are precluded from the model, such as version rollback
(by assuming a fixed version) and Triple Handshake [5] (by assuming that the
server be honest). This implies, in particular, that our results do not require the
collision resistance of the hash function for the security of the key derivation
(but only during the authentication); in other words, the additional security
achieved by including the session hash into the key derivation is neither defined
nor proven. Furthermore, our analysis does not cover session resumption.

Our analysis covers concurrent sessions, at the cost of some complexity in
our intermediary proof steps. Indeed, the specific design of TLS makes many of
these steps cumbersome by requiring us to model multiple sessions explicitly;
this is an effect of TLS breaking natural module boundaries between different
parts of the protocol, by explicitly using protocol data from lower levels (i.e., the
transmitted messages) in higher-level parts of the protocol (hashed transcripts
in the key derivation and the finished messages). Since some of the low-level
data used in these computations, such as the server certificate, are correlated
across multiple sessions of the same server, we cannot use generic composition
to prove them in isolation. In a protocol designed from scratch, one can ensure
that the separation of these sessions comes into full effect at a “lower” protocol
level, simplifying the proofs for the “higher” levels. Indeed, our difficulties in
the analysis encourages constructing protocols that are modular by design and
can be analyzed by combining simple modular steps. We stress that even for
TLS, we make heavy use of the composition theorem, not only to modularize
our analysis, but also to lift the security we obtain for one server and multiple
(anonymous) clients to the more standard multiple clients and servers setting,
and for composition with arbitrary other protocols.

As most cryptographic work on TLS, we focus on the cryptographic aspects
of TLS and many applied concerns are abstracted over. Moreover, as our work
is in the constructive cryptography model, with notation yet unfamiliar to our
audience, we focused in the body of our submission on the beauty (and elegance,
within the limits of TLS’ design characteristics), rather than the weight of our
contribution. We invite the interested reader to find the technical details in the
full version [17].

1.2 Related Work

On provable security. One aspect that is important in modeling and proving se-
curity especially of practical protocols is that of composability, as cryptographic
protocols are rarely designed to be used in isolation. Indeed, a security guarantee
in isolation does not necessarily imply security when a proven protocol is part of a
larger scheme. While one can generally prove the security of a composite scheme
by proving a reduction from breaking any of the component schemes to break-
ing the composite scheme, security frameworks that allow for general/universal
composition result in security definitions that relieve one from explicitly proving
such a reduction for each composite scheme. Such a reduction immediately fol-
lows from the security of the component schemes and the composition theorem.

For instance, suppose that one can prove that a given scheme (e.g. password-
based authentication) achieves mutual authentication, assuming that a unilat-
erally authenticated secure channel already exists. Suppose also that one has
several choices of how to construct this unilaterally secure channel, e.g., by RSA
or DH-based key-exchange, relying on the existence of a PKI and an insecure
network. In this case, the composition theorem implies that one only has to
prove that the two candidate schemes construct the unilaterally secure channel;
the security of the composition with the password-authentication scheme follows
immediately. Frameworks which allow for generic composition are the universal
composability framework (UC) due to Canetti [7], the reactive simulatability
(RSIM) framework of Pfitzmann and Waidner [23], and the constructive cryp-
tography framework (CC) of Maurer and Renner [21,20], which we use in this
work. In particular, one advantage we see in using constructive cryptography
is that it describes the way primitives are used within protocols with given re-
sources, and makes explicit the guarantees that they provide in an application
context. This provides an indication of how they can be used as part of more
complex protocols.

Authenticated key exchange. Authenticated key-exchange (AKE) protocols allow
two parties to agree on a session key that can be used to secure their commu-
nication. The “handshake” of the SSL/TLS protocol can be seen as an AKE.
Beyond secure Internet communication, AKE has many other applications, e.g.,
in card-based identity and payment protocols. The security of AKE protocols was
first defined by Bellare and Rogaway [4] as the indistinguishability of real session
keys from random keys. However, neither the initial Bellare-Rogaway model, nor
its modifications [3,2,8,10] are inherently composable. One special composition
of AKE protocols with record-layer-type encryption was shown by Brzuska et
al. [6]; however, AKE game-based security is not generally composable. Notions
of key exchange in composable frameworks have been defined by Canetti and
Krawczyk [9] and by Maurer, Tackmann, and Coretti [22], respectively.

TLS 1.2 vs. 1.3. As the TLS handshake is at present the most prominent AKE
protocol, the analysis of its versions up to and including TLS 1.2 has been
the subject of numerous papers in the literature. We note, however, that TLS

1.3 has a fundamentally different design from TLS 1.2, which has only been
thoroughly analyzed in one publication so far [14]. While elegant and covering
all modes in which the TLS 1.3 key derivation is done, this approach follows
traditional game-based methods and is neither as modular as ours, nor generally
composable. Several parts of the current protocol draft are adapted from work
by Krawczyk and Wee [19], this includes the new key derivation scheme that we
also describe in Section 4 and analyze in [17].

2 Our Approach—Description and Rationale

In constructive cryptography, the (security) guarantees provided to parties in a
specific context are formalized in terms of resources available to the parties. In
our analysis of TLS, resources are typically communication channels or shared
secret keys with certain properties. Cryptographic protocols construct (desired)
resources from assumed resources, and the composition theorem of this frame-
work guarantees that the protocol (using the resources assumed by it) can be
used whenever the constructed resource is required (as an assumed resource) in
future constructions, i.e., several subsequent constructions can be combined into
a single construction.

We model resources as discrete systems that provide one interface to each
honest party, along with a specific interface that formalizes the capabilities of a
potential attacker. Interfaces are labeled, such as C for a client, S for a server, or
E for the attacker. Interfaces can have sub-interfaces (think of them as grouping
related capabilities at the same interface for the sake of modularity); we write
for instance S/sid for the server sub-interface for session sid . Protocols con-
sist of one protocol engine or converter for each honest party. Compared with
“traditional” game-based definitions, the adversary model corresponds to the ca-
pabilities offered via the E-interface at the assumed resource and the honest
parties’ interfaces at the constructed resource. For instance, interaction with an
insecure network resource corresponds to an active attacker that is in full control
of the network (i.e., a chosen-ciphertext attack). The fact that in a constructed
channel the messages to be transmitted can be chosen by the distinguisher then
corresponds to a chosen-plaintext attack. The goal of the game is reflected in
the description of the constructed resource. The advantage of the adversary in
game-based definitions corresponds to the advantage of the distinguisher in con-
structive definitions.

Notation. We use a term algebra to describe composite systems, where resources
and converters are symbols, and they are composed via specific operations. We
read a composed expression starting from the right-hand side resource, extended
by systems on the left-hand side. If resource R has an interface A to which we
“connect” a converter α, the resulting system αAR is the composition of the two
systems, such that the converter connects to the A-interface of the resource R.
For resources R and S, [R,S] denotes the parallel composition of R and S. If
we compose a family of resources (Ri)i∈{1,...,n} in parallel, we also write this as

a product, e.g.
⊗n

i=1 Ri. We introduce special notation for families of interfaces
L and converters αL = (α`)`∈L. To attach each π` to interface ` of a resource
R, we write (αL)

LR.

Constructions. The construction notion is defined based on the distinguishing
advantage between two resources U and V, which can be seen as a distance mea-
sure on the set of resources.9 A distinguisher is a discrete system that connects
to all the interfaces of a resource and outputs a single bit. The distinguishing
advantage of a distinguisher D on two systems U and V is defined as

∆D (U,V) := |Pr(DU = 1)− Pr(DV = 1)|. (1)

The two main conditions defining a construction are: (1) availability (often
called correctness), stipulating that the protocol using the assumed resource
behaves as the constructed resource if no attacker is present at the E-interface;
and (2) security, requiring that there exists a simulator, which, if connected
at the E-interface of the constructed resource, achieves that the constructed
resource with the simulator behaves like the protocol with the assumed resource
(w.r.t. the distinguisher). For the availability condition, the “special converter”
⊥ signals the attacker’s absence; this is taken into account explicitly in the
description of the resources. Formally a construction is defined as follows:

Definition 1. Let ε1 and ε2 be two functions mapping each distinguisher D to
a real number in [0, 1]. Let L be the interfaces of protocol participants. A protocol
πL = (π`)`∈L constructs resource S from resource R with distance (ε1, ε2) and
with respect to the simulator σ, denoted

R
πL,σ,(ε1,ε2)

==⇒ S,

if, for all distinguishers D,∆D
(
(πL)

L⊥ER,⊥ES
)
≤ ε1(D) (availability),

∆D
(
(πL)

L
R, σES

)
≤ ε2(D) (security).

Games. Several of our construction steps are proved by reductions to the security
of underlying primitives, which are defined via game-based notions. A game can
be seen as a system that, when connected to an adversary, determines a single
bit W (denoting whether the game is won or lost). The success probability of an
adversary A with respect to a game G is

ΓA(G) := PrAG(W = 1).

For games that are defined as distinguishing problems (such as IND-CPA se-
curity for encryption schemes), we use the notation from equation (1), that is,
9 The distinguishing advantage is in fact a pseudo-metric on the set of resources, that
is, it is symmetric, the triangle inequality holds, and d(x, x) = 0 for all x. However,
it may be that d(x, y) = 0 for x 6= y.

Client Server

CHello[η]
CKeyShare[gu]

SHello[ν]
SKeyShare[gv]
Certificate[cert]
CertificateVfy[σ]
Finished

Finished

Key Derivation

guv

HKDF-Extract

xSS = xES

HKDF-Expand

htk mES mSS fsk

from xES from xSS

HKDF-Extract

msk

Fig. 1. The TLS 1.3 handshake and the key derivation in the case that the ephemeral
and the static handshake secret coincide.

if the game is described by the pair (G0,G1), then we are interested in the
advantage ∆A (G0,G1). Both Γ (·)(G) and ∆(·)(G0,G1) define adversarial ad-
vantage functions ε(·), such as εcr(A) = ΓA(Gcr) for the collision resistance of
a hash function, εuf-cma(A) = ΓA(Guf-cma) for the unforgeability of a signature,
or εddh(A) = ∆A

(
(gA, gB , gAB), (gA, gB , gC)

)
for the intractability of the DDH

assumption.

3 TLS 1.3 and Unilaterally Secure Channels

The general structure of TLS 1.3 in (EC)DHE mode is depicted in Figure 1
on the left. The client hello message includes a 32-byte nonce η; the client key
share fixes an (elliptic curve) group G of order q = |G| (with some generator g),
and an element gu for some u←$ {1, . . . , q} in that group. The server verifies
that the proposed group is in the list of acceptable groups; if so, it chooses a
32-bit nonce ν (the server hello message), and sends this, together with its key
share gv for v←$ {1, . . . , q}, its certificate (in the initial draft, encrypted with the
handshake keys, but in our case, without the encryption), and a certificate verify
message, namely a signed session hash, also encrypted in the original draft. As
a final message, the server sends an encryption (with its handshake transfer key
htk) of the finished message. The finished message is computed by evaluating a
PRF keyed with the finished secret fsk on the session hash. If the signature and

finished message verify, the client finished message is computed analogously and
sent to the server, completing the handshake.

The current version of key derivation in TLS 1.310 uses HKDF11 as a replace-
ment of the TLS PRF construction that was the backbone of previous versions.
This new key derivation, depicted in Figure 1 on the right, follows a more strin-
gent cryptographic design and adapts easily to various TLS handshake modes,
such as the an as-yet underspecified zero round-trip time (0-RTT) mode, in
which the client uses a previously-saved configuration to connect to a pre-known
server.

While we leave a more technical, detailed description of the key-derivation
steps to Section 4, note that we focus in this paper on one particular case of the
key derivation in which the client and server calculate only one Diffie-Hellman
value, obtained from the client and the server ephemeral key shares. The key
derivation in the TLS draft is also prepared for cases in which the two parties
compute two Diffie-Hellman values, one from the client share and the static
server share, and another from the same client share and the ephemeral server
share. In the case we consider, those two values are defined to be identical.

Unilaterally secure transmissions. The goal of TLS with server-only authenti-
cation is modeled by the following unilateral channel resource �� ��•n. This
resource is explicitly parametrized by the bound n on the number of sessions
in which an attacker uses a specific client nonce (this parameter appears in
the security bound). Parties input messages of length (at most) equal to TLS’s
maximum fragment size. We denote the set of all plaintexts as PT .

�� ��•n
No attacker present: Behave as a (multi-message) channel for messages
in PT between interfaces C and S/1.
Attacker present:

– Upon the first input (allow, e) with e ∈ [n] at the E-interface (if e was
not used before), provide a secure multiple-use (i.e., keep a buffer of
undelivered messages) channel between C and S/e. In particular:
• On input a message m ∈ PT at the C-interface, output |m| at

interface E.
• On input (deliver, client) at the E-interface, deliver the next mes-

sage at S/e.
• On input a message m ∈ PT at the S/e-interface, output |m| at

interface E.
• On input (deliver, server) at the E-interface, deliver the next mes-

sage at C.
– After input (conquer, e) with e ∈ [n] at the E-interface (if e was not used

before), forward messages in PT between the S/e- and E/e-interfaces
in both directions.

10 https://tools.ietf.org/id/draft-ietf-tls-tls13-07.txt
11 http://www.ietf.org/rfc/rfc5869.txt

https://tools.ietf.org/id/draft-ietf-tls-tls13-07.txt
http://www.ietf.org/rfc/rfc5869.txt

Intuitively, if no attacker is present, then the resource behaves like a direct
channel between a client C and a server’s S/1 sub-interface. If the attacker is
present, then we have either a secure channel between the client and the server
(first input (allow, e)) or, if the attacker was the one performing the handshake
(input (conquer, e)), a channel between the attacker and the server.

The assumed resources. The resources we assume for the TLS protocol are:
First, an insecure network NET (obtained by using the TCP/IP protocol over the
Internet), where the attacker can also learn the contents of messages transmitted
over the network, stop them, or inject arbitrary messages of his choice into the
network. Second, a public-key infrastructure (PKI) resource, which we view as
specific to a single server (whose identity we assume the client knows). This PKI
resource allows the server to send one message (its signature verification key)
authentically to all clients, thus capturing the guarantee that only the honest
server can register a public key relative to its own identity, and the clients verify
that the certificate is issued with respect to the expected identity. For simplicity,
we consider a model where the PKI is local to the security statement; aspects
of modeling a global PKI in composable security frameworks are discussed by
Canetti el al. [11].

The security achieved by TLS 1.3. We show that TLS 1.3 constructs �� ��•n
from PKI and NET by sequential decomposition of the protocol in the main
steps (right to left) shown in Figure 2. At each step, the resources constructed
in previous steps are used as assumed resources in order to construct a “new”
resource, until we construct the unidirectional channel �� ��•n. We describe
these steps in the rest of this paper.

Our reductions use the pseudorandomness of HMAC, as used internally by
HKDF, the pseudorandomness of HKDF itself when seeded with seed 0, the
unforgeability of signatures, the collision resistance for the hash function, the
intractability of the DDH assumption, and the security of authenticated encryp-
tion. We write εhmac, εkdf , εuf-cma, εcr, εddh, εaead for their advantage functions.

Theorem 2. Let C be a set of clients. The TLS 1.3 protocol constructs, for
each client C ∈ C, one unilaterally secure channel �� ��•n from NET and PKI.
Concretely, for the simulator σ and the adversaries A1, . . . ,A11 obtained from
D by explicit reductions derived from those in the modular proof steps,

[NET,PKI]
(tls13c,tls13s),σ,(ε1,ε2)

==⇒
⊗

(I,J)∈P

J�� ��•nK(I,J),

with:

ε1(D) :=

(
|C|
2

)
· 2−256 + |C| (εddh(A1) + 2εprf(A2) + 2εkdf(A3) + εhmac(A4))

and

ε2(D) :=
((n

2

)
+

(
|C|
2

))
· 2−256 + εuf-cma(A5) + εcr(A6) + n|C| · εddh(A7)

+ n|C| (2εprf(A8) + 2εkdf(A9) + εhmac(A10)) + 2|C| · εaead(A11).

This statement holds for all distinguishers D, some injection ρ : C → N ,
and P := {(C, S/ρ(C)) : C ∈ C} ∪ {(E/η, S/η) : η ∈ N \ ρ(C)}.

In the theorem, we construct the parallel composition
⊗

(I,J)∈PJ�� ��•nK(I,J)
with interfaces (I, J) taken from the set P. This models that the server can
identify clients only by some value used in the handshake —we chose the random
nonce ρ(C) ∈ N— and that the attacker can also interact with the server using
“new” nonces, picked by none of the clients.

As a corollary and following a result by Tackmann [24], we model the use
of password-based authentication to construct a bilaterally secure channel. We
assume a password distribution with maximum guessing probability ε as an
additional resource Q. Then the constructive corollary we postulate and prove
in Section 5 is:

Lemma 3. Sending and checking a password constructs from �� ��•n the chan-
nel •�� ��•, for a distribution Q of passwords as described above. More formally,
there is a simulator σ such that,

[�� ��•n,Q]
pwd,σ,(0,ε)

==⇒ •�� ��•.

4 De-constructing TLS 1.3

This section acts as a stage-by-stage proof for Theorem 2. Our strategy is to
prove that individual parts of the TLS protocol construct intermediate resources,
which can be used as assumed resources for the next modular construction step.
At the end, we use the composition theorem to show that the entire TLS 1.3
protocol constructs the �� ��•n channel shown in the previous section.

The structure of our proof follows Figure 2, read from right to left. We begin
by constructing a unique name resource, by choosing a random client nonce
uniformly at random from the set of 32-byte strings. The unique name resource
is then used to name client sessions on the insecure network NET; thus, from
a constructive point of view, the nonce exchange at the beginning of the TLS
protocol constructs from the resources NET and NAME the network-with-sessions
resource SNET.

The subsequent two steps construct the handshake key resource DHKEY from
the assumed PKI resource and the newly-constructed SNET resource. We pro-
ceed as follows: we first use these two resources to construct an authenticated
network-transmission resource / −• (the corresponding TLS step is signing the
server’s first message; its ephemeral share). From this / −• resource, we con-
struct the handshake key resource DHKEY by simply exchanging the client and
server shares to calculate a Diffie-Hellman secret.

PKI
NET

PKI
NET
NAMEρ

Sa
m
pl
e
no

nc
es

PKI
SNET

E
xc
ha

ng
e
no

nc
es

/ −•

Se
rv
er

si
gn

at
ur
e

DHKEY

D
H

ex
ch
an

ge

= =•n

E
xt
ra
ct
/e
xp

an
d

�� ��•n

P
ro
te
ct

pa
yl
oa

d
Fig. 2. The decomposition of TLS 1.3.

The next step is then to use the key derivation described in Figure 1 to extract
an (almost) uniformly random bit-string key from the Diffie-Hellman secret, and
expand this to obtain all application keys required by the subsequent protocol
steps.

The final step of the protocol is the actual payload protection, which begins
by exchanging the finished messages computed using derived keys, and subse-
quently protecting plaintext messages using authenticated encryption.

Session naming. We formalize unique client naming by means of a resource
NAMEρ, parametrized by an injection ρ from the set C of honest clients to the
set N of nonces; this resource returns to each client a unique nonce. NAMEρ
can be constructed from scratch: As a nonce contains 256 bits of randomness for
TLS 1.3, choosing a nonce at random yields a unique nonce per client up to a
loss of

(|C|
2

)
2−256, where |C| is the total number of honest clients.

Augmented Network Resource SNETρ,n
The resource is parametrized by an injective function ρ : C → N , and n ∈ N.
No attacker present: For each C ∈ C choose a nonce νsid ←$N with sid =
(ρ(C), 1), output (ρ(C), νsid) at interface C and νsid at interface S/sid , and provide
bidirectional channels between those two interfaces.
Attacker present: Initialize eη = 0 for all η ∈ N . For each C ∈ C, output the
nonce η at the interface C and forward all messages input at interface C to the
interface E/C. Additionally:

– Upon input (ack, η) at interface E, if eη ≤ n, then for sid = (η, eη) choose a
nonce νsid uniformly at random from N \{ν(η,1), . . . , ν(η,eη−1)}, output νsid at
interface E/sid and S/sid , and increase eη. Then, forward all communication
between the interfaces S/sid and E/sid .

– Upon input (deliver, C, ν) with C ∈ C, output the server’s nonce ν at the
interface C. Then, forward all messages between interfaces E/C and C.

Fig. 3. The network resource that additionally outputs nonces.

Naming network sessions. The client nonce η helps the server associate a ses-
sion with some client C. Honest clients use distinct nonces, obtained from the
NAMEρ resource; however, an attacker can start many sessions with the same

nonce (possibly generated by an honest client). Thus, we index sessions by pairs
sid = (η, e) ∈ N×N, where e differentiates sessions with the same η. The server’s
nonce ν for that session is chosen at random and sent to the client; this protocol
constructs, from the resources NAMEρ and the network resource NET, the re-
source SNET (the full details and description of the client and server converters,
denoted hec and hesn are left to the full version).

The resource SNET, described in Figure 3, has interfaces labeled C ∈ C
for the clients, a server interface S with one sub-interface for each pair (η, e),
where η ∈ N is a nonce, not necessarily from an honest client, and e ∈ [n]
is a counter indicating how many sessions are initiated with nonce η, and an
attacker’s interface called E. To simplify further construction steps, we rule out
collisions for server nonces in the SNET resource below, in sessions associated
with the same nonce (i.e., sid = (η, e) and sid ′ = (η, e′)). Since the server nonce
has the same structure as the client nonce, the security loss is analogous.

The following statement holds:

Lemma 4. Let C ⊆ A and let ρ : C → N be an injective mapping. The protocol
(hec, hesn) constructs the resource SNETρ,n from the resources NET and NAMEρ.
In more detail, for the simulator σ in the proof:

[NET,NAMEρ]
(hec,hesn),σ,(0,ε)

==⇒ SNETρ,n,

with ε(D) :=
(
n
2

)
· 2−256 for all distinguishers D.

The shared key resource. The next step is to construct the Diffie-Hellman key
DHKEY; we decompose this step into two smaller steps, briefly described below
(we refer to [17] for full details). We represent the DHKEY resource as a particular
parametrization of the generic shared key resource KEYρ,AUX ,n,K detailed in
Figure 4, with a key space K that is the Diffie-Hellman group G.

Our first step is to construct from the PKI and SNET resources an authenti-
cated network resource / −•ρ,F,SIG,n,h using the certificate and the signature in
the TLS certificate verify message. This resource allows the server to transmit
one message in each session authentically; this is achieved by signing the mes-
sage together with a hash of the handshake messages in order to bind it to the
session. The reduction relies on the unforgeability of the signature scheme and
the collision resistance in the handshake hash.

From / −•ρ,F,SIG,n,h, we then construct, under the DDH assumption in G,
the resource DHKEY. Intuitively, the converters here are simply exchanging the
Diffie-Hellman elements and perform the corresponding computation, where the
transmission of the server’s message relies on the authentication guarantees of
the assumed resource. In particular, the signature computed and forwarded in
the authentication step allows a client to abort an execution if the signature
verification on the handshake hash fails. This is reflected in the second bullet
point of the resource KEYρ,AUX ,n,K.

The composition theorem allows us to combine the two intermediary steps
in the following lemma, where we denote by hsc and hss the compositions of the
two converters (protocol steps) outlined above:

Shared Key Resource KEYρ,AUX ,n,K
No attacker present: For each C ∈ C, choose a key κC ←$K, a nonce νsid ←$N
(with sid = (ρ(C), 1)), and auxiliary information auxC ←$ AUX , and output
(κC , ρ(C), νsid , auxC) at interface C and (κC , νsid , auxC) at the interface S/sid .
Then, provide bidirectional channels between those two interfaces.
Attacker present: Initialize eη = 1 for all η ∈ ρ(C).

– Upon input (ack, η) at the E-interface, if η ∈ N and eη ≤ n, then choose νsid
uniformly at random from N \ {ν(η,1), . . . , ν(η,eη−1)} for sid = (η, eη), output
νsid at the E-interface and increase eη.

– Upon input (allow, C, aux , ν) at the E-interface with aux ∈ {0, 1}∗, and ν ∈
N :
1. If ν = νsid and there was a previous (server-allow, η, e, aux) resulting

in setting κsid for some sid = (η, e) with η = ρ(C) and e < eη, then set
κC = κsid ; else, abort without generating keys.

2. Output at the C-interface (κC , ρ(C), ν, aux).
Afterward, if at the C-interface a message m is input, output m at the E-
interface. Also, allow at the E-interface to inject messages m′, to be output at
the C-interface.

– Upon input (server-allow, η, e, aux) at the E-interface with e < eη, with
sid = (η, e):
1. If, for C = ρ−1(η), (allow, C, ∗, νsid) was input at the E-interface before

(i.e., with the current server’s nonce), then set κsid = κC ; else draw κsid

uniformly at random from K.
2. Output (κsid , νsid , aux) at interface S/sid .

– Upon input (inject, η, e, aux , κ) at the E-interface, if e < eη, then for sid =
(η, e) output (κ, νsid , aux) at interface S/sid .

After either a (server-allow, η, e, ∗) or a (inject, η, e, ∗, ∗) message, if at interface
S/sid (with sid = (η, e)) a messagem is input, outputm at interface E. Also, allow
at interface E to inject messages m′ to be output at interface S/sid .

Fig. 4. The shared key resource.

Lemma 5. The protocol (hsc, hss) constructs from the assumed resources PKI
and SNETρ,n the resource DHKEY, given that: the signature scheme used in cer-
tification is unforgeable, the hash function is collision resistant, and the DDH as-
sumption holds. More formally, for the simulator σ and the reductions C1, . . .C4

described in the proof,

[SNETρ,n,PKIF]
(hsc,hss),σ,(ε1,ε2)

==⇒ DHKEYρ,AUX ,n,

such that for all distinguishers D: ε1(D) := |C| · εddh(DC1), and ε2(D) :=
εuf-cma(DC2) + εCR(DC3) + n · |C| · εddh(DC4).

Expanding the key. The next step is to extract from the Diffie-Hellman secret
and then expand the keys (following the scheme shown in Figure 1). Finally,

the finished messages used for key confirmation are computed. Interestingly, the
only effect of the finished messages in our case is that the client and server detect
mismatching keys before the first application data is accepted by the protocol.
This does not exclude, however, that these messages serve a more crucial role
in certain handshake modes or for proving specific security properties we do not
consider in this paper.

The key derivation in the newest draft of TLS 1.3 differs considerably from
that of TLS 1.2. From the Diffie-Hellman secret, several sets of session keys
are derived for use in symmetric primitives: the application traffic keys atk for
the protection of the payload data, handshake traffic keys htk used to protect
some data packets in the handshake, the finished secret fsk used for the finished
messages, and early-data keys used in the 0-RTT mode (the latter do not appear
in our analysis). All computations are based on HKDF [18].

The key derivation can be described in several steps corresponding in our
analysis to separate, simple construction steps that are composed via the com-
position theorem:

1. First, two keys xES and xSS are computed by calling HKDF.extract(0, pmk),
that is, evaluating the HKDF extraction with seed 0 on the Diffie-Hellman
key pmk computed in the key exchange. This step assumes the security of
HKDF as a computational extractor (therefore relying on a statement proven
in the random-oracle model).

2. Using the expansion of HKDF, several keys are computed:
(a) The finished secret fsk ← HKDF.expand(xSS , “finished” , h) for the con-

firmation messages, where h is the hash of the handshake messages,
(b) the “static” master secret value mSS ← HKDF.expand(xSS , “static”, h),
(c) the “ephemeral” value mES ← HKDF.expand(xES , “ephemeral” , h),
(d) the handshake traffic keys htk ← HKDF.expand(xES , “handshake” , h).
This step assumes the security of the HKDF expansion as a pseudo-random
function.

3. Then, compute the master secret key msk ← HKDF.extract(mSS ,mES) by
using HKDF to extract from mES using the seed mSS . This step relies only
on the fact that the HKDF extraction is a pseudo-random function, as mSS
is a good key—in fact a weak PRF is sufficient as mES is (pseudo) random.

4. Expand the application traffic keys atk by an HKDF expansion as follows:
atk ← HKDF.expand(msk, “application”, h). This step again relies on the
HKDF expansion being a PRF.

In order to treat the expanded keys as separate resources for each client,
we also incorporate the generation of the finished messages into the construc-
tion of those keys. Those messages are computed by evaluating HMAC with
the key fsk on the session hash h and static labels. This requires that HMAC
is a PRF. Since the expansion is the final step that explicitly relies on values
that are consistent across several sessions (such as the server’s certificate), the
constructed expanded-key resource = =•n can be described in a way that is
single-client, as opposed to the more complicated KEYρ,AUX ,n,K resource. The
resource = =•n allows a single client and server session to compute the same

keys and finished messages if the attacker did not establish that server session
himself. Otherwise, the server and attacker share keys, as depicted in the descrip-
tion of = =•n [17]. We describe the resource we want to obtain at key expansion
by:

⊗
C∈CJ= =•nK(C,S/ρ(C)), i.e. a parallel composition of such channels with

appropriate interface labels.
The key-expansion steps yield the following constructive statement:

Lemma 6. The protocol (expc13, exps13) constructs the parallel composition of
keys

⊗
(I,J)∈PJ= =•ncphs,nK(I,J) from the secret key resource DHKEY, for P :=

{(C, S/ρ(C)) : C ∈ C} ∪ {(E/η, S/η) : η /∈ ρ(C)}. The construction holds under
the assumptions that HKDF is a KDF with seed 0, and that HKDF expansion
and HMAC are PRFs. In more detail, for the simulator σ and the reductions
C1, . . . ,C5 described in the proof,

DHKEYρ,AUX ,n
(expc13,exps13),σ,(ε,ε′)

==⇒
⊗

(I,J)∈P

J= =•nK(I,J)

where, for all distinguishers D, ε′(D) = n · ε(D) and

ε(D) = |C| ·
(
εkdf(DC1) + εprf(DC2) + εkdf(DC3) + εprf(DC4) + εhmac(DC5)

)
.

The record layer. The authenticated key resource = =•n constructed in the pre-
vious step yields sets of keys (htk , atk , fsk) and the finished messages. The gap
between the resource = =•n and our goal resource, i.e., the unilaterally-secure
channel �� ��•n, is bridged by a pair of converters essentially exchanging and
verifying the finished messages, then using authenticated encryption to protect
messages. The key property of our constructed resource, �� ��•n, is notably that
it allows for messages to be securely (confidentially and authentically) transmit-
ted, either consistently between the server and the honest client, or between the
server and the adversary (but never between the client and the adversary).

For TLS 1.3 the record-layer protocol is specified based on authenticated
encryption with associated data (AEAD). This mode has been analyzed by
Badertscher et al. [1] in recent work. Their result can be “imported” into our
work. Thus, for the final step of the proof, we rely on the security of AEAD en-
cryption, which is defined in terms of indistinguishability between two systems
Gaead

0 and Gaead
1 , formally detailed in the full version. In Gaead

0 , encryption and
decryption queries to the scheme are answered by encryption and decryption
using the given nonce and associated data. For Gaead

1 , encryption queries are
answered with uniformly random strings of appropriate length, while decryption
queries are answered either with a corresponding plaintext (if they were output
by a previous encryption query) or by a special invalid symbol otherwise.

Lemma 7. The protocol (aeadc, aeads) constructs from the authenticated key
resource = =•n the unilaterally secure channel �� ��•n, under the assumption
that the underlying AEAD cipher is secure. More formally, for the simulator σ
and the reduction C described in the proof,

= =•n
(aeadc,aeads),σ,(0,ε)

==⇒ �� ��•n,

with ε(D) := 2 · εaead(C) for all distinguishers D.

Re-constructing TLS. At this point, using the composition theorem completes
the proof of Theorem 2. In the full version, we also explain in detail how the
composition of all the converters from the modular-steps yields the TLS protocol.

5 Composition with Password-Based Authentication

In prior work, Maurer et al. [22,24] have discussed means of authenticating a
unilaterally authenticated key by using password-based authentication. Thus,
by starting from a unilateral key resource (similar to our = =•n resource), one
can use a password—a key with relatively low entropy—shared between a client
and a server to obtain a key for which both client and server have authenticity
guarantees, and which is sometimes denoted as •= =• (the bullet on the left
hand side indicates that the client is also authenticated). The resources = =•n
and •= =• are different in that in = =•n the attacker at the E-interface can also
inject a key to be shared with the server (no client authentication). For •= =•
this is no longer possible.

We use the same ideas here, but our goal is to construct the fully secure chan-
nel •�� ��• described below from the unilaterally secure bidirectional �� ��•n
and a password.

•�� ��•
No attacker present: Behave as a (multi-message) channel between inter-
faces C and S.
Attacker present: Provide a secure multiple-use (i.e., keep a buffer of un-
delivered messages) channel between C and S. In particular:

– On input a message m ∈ PT at the C-interface, output |m| at inter-
face E.

– On input (deliver, client) at the E-interface, deliver the next message
at S.

– On input a message m ∈ PT at the S-interface, output |m| at inter-
face E.

– On input (deliver, server) at the E-interface, deliver the next message
at C.

The protocol consists of two simple converters: sending the password (client)
and verifying it (server), abbreviated as pwd = (pwd.send, pwd.check). After the
password exchange, the converters simply send and receive messages via the
channel. For simplicity, we assume that the server accepts the same user password
only once; this can be generalized along the lines of [24, Theorem 4.17]. We model
a password distribution with maximum guessing probability ε as an additional
resource Q. The constructive statement we postulate is:

Lemma 3. Sending and checking a password constructs from �� ��•n the chan-
nel •�� ��•, for a distribution Q of passwords as described above. More formally,
there is a simulator σ such that,

[�� ��•n,Q]
pwd,σ,(0,ε)

==⇒ •�� ��•.

Proof (sketch). The availability condition follows since the client and the server
obtain the same password. The simulator works as follows:

– the session between the honest client and the server is handled by (essen-
tially) forwarding the communication between the E-interface of the con-
structed resource and the distinguisher,

– for all other sessions, the simulator simply drops all messages provided at its
outside interface.

The only way for the distinguisher to be successful in distinguishing between the
two cases is by guessing the correct password, since otherwise the behavior is
the same in both cases. Since the server accepts a password only once, we can
bound the overall success probability of the distinguisher by ε. ut

Acknowledgments

Ueli Maurer was supported by the Swiss National Science Foundation (SNF),
project no. 200020-132794. Björn Tackmann was supported by the Swiss Na-
tional Science Foundation (SNF) via Fellowship no. P2EZP2_155566 and the
NSF grants CNS-1228890 and CNS-1116800. Daniele Venturi acknowledges sup-
port by the European Commission (Directorate General Home Affairs) under
the GAINS project HOME/2013/CIPS/AG/4000005057, and by the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 644666.

References

1. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented
secure channels as the goal of the TLS record layer. In: Au, M.H., Miyaji, A. (eds.)
Provable Security. LNCS, Springer (2015)

2. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: Prov-
ably fixing the SSH binary packet protocol. ACM Transactions on Information and
System Security (TISSEC) 7(2), 206–241 (2004)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) Advances in Cryptology — EU-
ROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer (2000)

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) Advances in Cryptology — CRYPTO 1993. LNCS, vol. 773, pp. 232–249.
Springer (1993)

5. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.Y.: Triple
handshakes and cookie cutters: Breaking and fixing authentication over TLS. In:
IEEE Symposium on Security and Privacy (SP’14). IEEE (2014)

6. Brzuska, C., Fischlin, M., Smart, N., Warinschi, B., Williams, S.: Less is more:
Relaxed yet composable security notions for key exchange. International Journal
of Information Security 12(4), 267–297 (2013)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (July 2013)

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) Advances in Cryptology — EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer (2001)

9. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and se-
cure channels. In: Knudsen, L.R. (ed.) Proceedings of EUROCRYPT 2002. LNCS,
vol. 2332, pp. 337–351. Springer (2002)

10. Canetti, R., Krawczyk, H.: HMQV: A high-performance secure diffie-hellman pro-
tocol. In: Shoup, V. (ed.) Advances in Cryptology — CRYPTO 2005. LNCS, vol.
3621, pp. 546–566. Springer (2005)

11. Canetti, R., Shahaf, D., Vald, M.: Universally composable authentication and key-
exchange with global PKI. Cryptology ePrint Archive Report 2014/432 (October
2014)

12. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246 (August 2008), http://www.ietf.org/rfc/rfc5246.txt

13. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.3.
RFC draft (April 2015), http://tlswg.github.io/tls13-spec/

14. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In: ACM Conference on Computer and
Communications Security 2015 (2015)

15. Hickman, K.: The SSL protocol (February 1995), https://tools.ietf.org/html/
draft-hickman-netscape-ssl-00, internet draft

16. Jost, D.: A Constructive Analysis of IPSec. Master’s thesis, ETH Zürich (April
2014)

17. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: (De-)constucting
TLS. Cryptology ePrint Archive, Report 020/2014 (2014)

18. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: Rabin, T. (ed.) Advances in Cryptology — CRYPTO 2010. LNCS, vol. 6223,
pp. 631–648. Springer (2010)

19. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. Manuscript (September
2015)

20. Maurer, U.: Constructive cryptography: A new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011—Theory of
Security and Applications. LNCS, vol. 6993, pp. 33–56. Springer (2011)

21. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Sci-
ence. Tsinghua University Press (2011)

22. Maurer, U., Tackmann, B., Coretti, S.: Key exchange with unilateral authenti-
cation: Composable security definition and modular protocol design. Cryptology
ePrint Archive, Report 2013/555 (2013)

23. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy. pp. 184–200. IEEE (2001)

24. Tackmann, B.: A Theory of Secure Communication. Ph.D. thesis, ETH Zürich
(2014)

http://www.ietf.org/rfc/rfc5246.txt
http://tlswg.github.io/tls13-spec/
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00

	(De-)Constructing TLS 1.3

