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Abstract. This paper investigates the Random Oracle Model (ROM)
feature known as programmability, which allows security reductions in
the ROM to dynamically choose the range points of an ideal hash func-
tion. This property is interesting for at least two reasons: first, because
of its seeming artificiality (no standard model hash function is known to
support such adaptive programming); second, the only known security
reductions for many important cryptographic schemes rely fundamen-
tally on programming. We provide formal tools to study the role of pro-
grammability in provable security. This includes a framework describing
three levels of programming in reductions (none, limited, and full). We
then prove that no black-box reductions can be given for FDH signa-
tures when only limited programming is allowed, giving formal support
for the intuition that full programming is fundamental to the provable
security of FDH. We also show that Shoup’s trapdoor-permutation-based
key-encapsulation is provably CCA-secure with limited programmability,
but no black-box reduction succeeds when no programming at all is per-
mitted. Our negative results use a new concrete-security variant of Hsiao
and Reyzin’s two-oracle separation technique.

Keywords: hash functions, random oracle model, programmability, in-
differentiability framework

1 Introduction

In the random oracle model (ROM) [1] parties are provided oracle access to a
publicly available random function, a random oracle (RO). A random oracle is
often viewed as the idealization of a cryptographic hash function, and security
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Fig. 1. Relations between the proposed models and example results. A “public” inter-
face indicates that reduction B can see all queries of adversary A, whereas “set $” de-
notes that B can re-assign random values to R, and Rρ denotes a weakly-programmable
RO. The “example: xxx” labels indicate a scheme xxx that enjoys a proof of security
in the model above it, but for which we show black-box separation results implying the
difficulty of proving its security in models to the right.

proofs in the ROM provide heuristic support for actual security when real hash
functions are used instead. The ROM enables proofs of security for a multitude
of important schemes because reductions may exploit various properties of a RO
that can be realized only to a limited extent (if at all) in the standard model.

One such property is programmability. Loosely speaking, a random oracle can
be “implemented” by dynamically selecting return values, and so long as the
distribution of outputs is correct (uniform on the specified range), any method
for selecting these values is permitted. The technique of programming RO output
values in a security reduction seems crucial in countless positive results, e.g. [1,
3–5,7]. However, no standard model function is known to provide the completely
arbitrary and adaptive programmability provided by a RO, making it natural
to wonder: which (if any) of these results could have been established without
exploiting the full programmability of the ROM?

In this paper we formally explore models in which programmability of the
random oracle in reductions is restricted. For this, we propose a form of limited
programmability that is between full and no programmability. We provide two
different but, surprisingly, equivalent characterizations of this limited form of
programmability. We use them to show that: (1) one can prove (using a new
variant of the Hsiao-Reyzin two-oracle separation technique [11]) the inabil-
ity to give a programming-limited black-box reduction for the FDH signature
scheme [1] and (2) that Shoup’s trapdoor-permutation-based key encapsulation
scheme (TDP-KEM) [15] is provably CCA secure given only limited programma-
bility, while no black-box reduction works when programming is forbidden. For
a diagrammatic summary of our main results, see Figure 1.

Modeling (Non-)Programmability in Reductions. Nielsen [13] was the
first to formally investigate the role of programmability in security results. He
showed that there is no way to realize a natural cryptographic functionality
(non-committing non-interactive encryption) in a ROM-like model that strictly



prohibits programming of RO outputs. His result, and a more recent one by
Wee [17] in the context of zero-knowledge, apply to simulation-based notions
of security, and in particular restrict the ability of the simulator in these to
program the RO. Unfortunately, these approaches are not sufficient to reason
about the majority of ROM security proofs, which exploit programmability in
security reductions, for example to embed an instance of a hard problem into
RO outputs.

Our work considers this complementary direction, by investigating security
reductions in models equipped with random oracles, but in which the ability
of the reduction to program the random oracle is constrained. Along the lines
of Nielsen’s approach [13] in the simulation-based setting, our first contribu-
tion is to formalize non-programming reductions in the black-box (BB) setting
(i.e. reductions only have oracle access to adversaries) by making the reduction
work relative to an external RO (to which the adversary also has access).6 We
then propose a natural relaxation called randomly-programming reductions. In-
tuitively, the external random oracle is realized by a message-indexed table of
randomly-chosen points, and while the reduction does not get to pick the range
points, it can pick the order they appear in the table. As we shall see, this lim-
itation on programming realizes an interesting middle point between full and
no programming, and one that captures the provability of important schemes.
Finally, a fully-programming reduction allows the reduction to arbitrarily choose
output range values, as in traditional ROM proofs.

The Weakly-Programmable Random Oracle Model. A limitation of the
above reduction-centric approach is the restriction to BB reductions. Indeed, as
observed by Nielsen [13], providing models in which one can argue about limita-
tions on programmability in non-BB reductions is challenging. This is because,
in a non-BB setting, the reduction directly simulates all oracle queries made by
an adversary and so there is no way to force the reduction to work relative to
an external RO. We resolve this difficulty for the case of randomly-programming
reductions by proposing a new variant of the ROM.

A Weakly-Programmable Random Oracle (WPRO) works as follows to form
an idealized model of a hash function. Let ρ be an arbitrary function (whose
range matches that of the hash function). For each distinct input x, the WPRO
chooses its output to be ρ(r) for a random coin-string r. Additionally, the WPRO
allows only adversaries to obtain the coins r used to generate any output. Then
in the WPRO model (WPROM) all parties have access to a WPRO that uses
a regular, one-way function ρ. The requirements on ρ ensure that the WPROM
limits programmability. For example, attempting to program an output of the
oracle to a given value y requires computing ρ−1(y) and refuting one-wayness;
regularity implies that the output of ρ is uniform, as usually required for random
oracles.

The WPRO model appears to have little to do with randomly-programming
reductions. Nevertheless, we prove that the two characterizations of limited

6 The reduction does see the queries made by the adversary and the oracle’s replies.



programming are strongly related. Namely, Proposition 3 states that any BB
reduction in the WPROM implies a randomly-programming reduction, while
Proposition 4 states that any randomly-programming reduction implies a reduc-
tion in the WPROM. Besides being convenient in proving results (the WPROM
typically being easier to work with), the equivalence provides some evidence
that this formulation of limited programmability is well-founded. The results
discussed next point to this as well.

Implications for Practical Schemes. We put these new tools to use by
reconsidering security proofs of various important schemes. These schemes can
be viewed as initial and interesting case studies; we expect that one can use
our techniques readily to analyze the need for programmability in many further
schemes.

A first example is FDH signatures. The only known security proofs [1, 7]
use reductions that embed a challenge range point for the underlying trapdoor
permutation in one (or more) of the hash query responses. It may be, though,
that a clever reduction exists that does not rely on programming. We give formal
evidence that this is unlikely: Theorem 4 states that no BB reduction exists
that shows FDH is secure in the WPROM, even for a very weak definition of
unforgeability. Even if the intuition is clear that programming plays a significant
role in existing reductions, we emphasize that proving the inability to give a
reduction here is technically involved. Previous negative results use inherently
asymptotic methods to achieve black-box separations in the uniform setting.
Instead, our proof of Theorem 4 makes use of a novel approach that is non-
asymptotic in nature. This result is complementary to existing negative results
about FDH, e.g. [8]. (See the full version for additional discussion.)

A more involved example is Shoup’s TDP-KEM [15]. Shoup’s (IND-CCA)
security proof does not involve embedding a challenge in the output of the RO,
but rather programming is used to ensure consistency between simulation of a
decapsulation oracle and simulation of the RO. We show the following surprising
result: Shoup’s TDP-KEM is CCA-secure in the WPROM (Theorem 2), but no
non-programming BB reduction exists for showing CCA-security (Theorem 3).
The negative result is even more complex than in the FDH case, involving sev-
eral interesting technical hurdles (e.g. dealing with the fact that reductions can
rewind adversaries, explicitly allowed in our non-programming reduction frame-
work).

We also observe that OAEP [2] is an example of a scheme whose proof requires
no programming whatsoever. This is actually evident by inspection of the proof
given in [9]. We give the details in the full version, where all proofs omitted due
to space constraints can also be found.

Discussion. Note that proving security with limited or no programming (still)
only provides heuristic evidence for security. That said, it could be the case that
proofs in the WPROM or that use a non-programming reduction provide a better
heuristic than the ROM. While this would hold for any weakening of the ROM,
we feel that programmability is a particularly interesting case due to its apparent



artificiality. Note, for example, that one can actually run a non-programming
RO reduction when a concrete hash function (e.g. SHA-256) is used to realize
the RO. This is not true for fully or randomly-programming reductions.

Further Related Work. Hofheinz and Kiltz [10] offer some insights on pro-
grammability from a completely different angle. Generalizing a technique due
to Waters [16], they built standard-model hash functions that provide a limited
form of programmability. Unfortunately, their hash functions are not sufficiently
programmable to admit the techniques used in security arguments for ROM
schemes like FDH and Fiat-Shamir. Nonetheless, their work indicates that a
better understanding of programmability could lead to more broadly applicable
standard-model solutions.

2 Reduction-Centric Models

In this section, we first formalize at an abstract level the general concept of a
black-box reduction in the random oracle model. Furthermore, we present two
variations of the black-box reduction notion where the reduction’s capabilities
in programming the random oracle are restricted.

2.1 Preliminaries

We begin by establishing notation and execution semantics for algorithms and
oracles.

Oracle Access to Adversaries. We model all algorithms (e.g. adversaries
and reductions) and ideal primitives (e.g. random oracles) as interactive Turing
machines (ITM). In particular these machines can be probabilistic and can keep
state. Each machine may have several communication tapes, which we usually
call interfaces, that connect different machines to each other. We write A(·) to
denote an ITM A with an interface that expects oracle (i.e. black-box) access to
some other ITM. A reduction B with oracle access to adversary A(·) (denoted

as BA(·)

) is allowed to do the following:

At any time, B can start a copy of the algorithm A(·) on (chosen) random-
ness and input, where the random coins are those used to compute the first
output (or oracle query).

Once such a copy is started, B obtains each value output by A and must
provide both the corresponding answer and the random coins needed for
the execution of A to continue to its next output. (This includes queries to
the given oracles.)

At any point in time, B may halt the execution of the current copy of A.

Note that the model is general enough so that B can, for example, “rewind” the
adversary A to an arbitrary output by running a new copy of A with previously
given coins.



We stress that if we write that B is given oracle access to AO for a particular
oracle O (as opposed to A(·)), then B does not get to answer A’s queries to O.
Queries are sent directly to, and answered directly by O itself. We write (for
example) A(·,O) when we wish to be explicit that queries to the first oracle are
controlled by B, and the second are not. Sometimes we will simply omit some of
the oracles which are controlled by B: the understanding is that any oracle which
is not explicitly given to A in our notation can be controlled by the reduction.

Finally, we write AOpub to mean the following: when A queries x to O, x is
forwarded to B, which can then perform some computations, call other oracles,
and only after this triggers delivery of O(x) to A. The answer is however given
by O directly (but visible to B) and there is no way for B to influence it directly.7

This construct will be useful in a number of contexts.

Security Properties. It is convenient to consider generic security properties
Π for cryptographic primitives defined in terms of games involving a candidate f
(called a Π-candidate) and an adversary A (called a Π-adversary). In particular,
with each triple f , A and Π we associate an advantage AdvΠ

f (A), and f is said to

be Π-secure if AdvΠ
f (A) is small for all efficient adversaries A. It is convenient

to assume that the advantage satisfies the following linearity condition: if an
oracle O behaves as O1 with probability p and as O2 with probability 1 − p,
then AdvΠ

fO (AO) = p ·AdvΠ
fO1 (AO1)+(1−p) ·AdvΠ

fO2 (AO2) for every (oracle)
primitive f and all adversaries A. Despite there being a few advantage notions
that do not satisfy this property (e.g. distinguishing advantage with absolute
values), an equivalent notion satisfying this property can typically be given (e.g.
dispense with the absolute values).

2.2 Black-Box Reductions in the ROM

When we talk about black-box reductions, we mean fully black-box security re-
ductions as defined by Reingold et al. [14]. Those reductions are paramount
in cryptography, especially for random-oracle based schemes with practical effi-
ciency as a design goal.

We present in Definition 1 below our formalization of fully-black-box reduc-
tions in the ROM, as well as our two variants with limited and no programma-
bility of the random oracle, which we first introduce in detail.

Fully-Programming Reductions (FPRed). The first notion formalizes the
standard concept of black-box reductions in the ROM. As they support the
common strategy of programming the ROM without any restriction, we refer
to such reductions as fully-programming reductions.

Non-Programming Reductions (NPRed). The first (stronger) new notion
that we introduce captures the fact that the reduction has no control at all
on the answers of random oracle queries. Namely, the queries are answered
by a random oracle which is chosen once, independently from the reduction

7 But the answer may be influenced through queries to related oracles.



B and its input(s), and remains the same for every execution of an adver-
sary A initiated by B. While the reduction B can learn all of the RO-queries
issued by A, there is no way for B to influence their distribution. Intuitively,
this models the fact that the reduction can be run with an external random
oracle.

Randomly-Programming Reductions (RPRed). Our second variant only
allows the reduction B to program the RO with random instead of arbi-
trary values, and is hence somewhat between fully- and non-programming
reductions, To this end, we first introduce a randomly-programmable ran-
dom oracle (RPRO) which is an idealized object that exposes three inter-
faces: Reval , Rrand , Rprog (a conventional RO can be seen as having a single
interface to callers). If called via the evaluation interface Reval , it behaves
as a conventional random oracle mapping Dom → Rng . A second random
interface Rrand implements a random mapping {0, 1}∗ → Rng . Finally, the
programming interface Rprog takes X ∈ Dom and Y ∈ {0, 1}∗ as input, and
sets Reval(X) to be the same as Rrand(Y ).
As A’s queries to the evaluation interface of Reval are public, the reduction
B is allowed, on query X by A, to perform a number of Rrand calls followed
by a suitable Rprog(X,Y ) invocation in order to let the output of A’s query
satisfy a certain property before the query is actually answered to A. This
allows a minimal amount of programmability, for instance a constant number
of output bits can be forced to take some input-dependent value.
We note that these interfaces allow to “reprogram” the random oracle. This
supports, among other things, the ability to rewind the adversary and run it
on “another”, partly consistent random oracle, but where the reduction does
not need to choose the actual values. Note that non-programming reductions
prevent such forking techniques.

In the following, let S = SR[f ] be a cryptographic scheme relying on a primi-
tive f and a random oracle R : Dom → Rng . Let Π and Π ′ be security properties
which can possibly be satisfied by S and f , respectively.

Definition 1 (FPRed, NPRed, RPRed). Let X ∈ {fully-programming,
non-programming, randomly-programming}. A (Π → Π ′, δ, t, qO, qA)-fully-BB
X ROM security reduction for S is an oracle machine B(·,·) with the property
that for all8 Π-adversaries A(·) and all Π ′-candidates f , if

AdvΠ
SR[f ](A

R) > ǫ

for a random oracle R : Dom → Rng and ǫ > 0, then

AdvΠ′

f (BO1,AO2
) > δ(ǫ, q, ℓ),

where q is the total number of queries A makes and ℓ is the overall length of these
queries. Furthermore, B runs in time t, makes qO queries to the given oracle(s)

8 In particular, including those which are not efficiently implementable.



O1 and runs qA instantiations of AO2 , where all three quantities are functions
of ǫ, q, and ℓ. Moreover, when:

X = fully-programming, then O1 = f , O2 = (·), and qO = qF

X = non-programming, then O1 = (f,R), O2 = Rpub, and qO = (qF , qR)

X = randomly-programming, then O1 = (f,R′
eval , R

′
prog , R′

rand),

O2 = R′
eval,pub, and qO = (qF , qev, qpr, qra),

where R′ = (R′
eval , R

′
prog , R′

rand) is a RPRO.

2.3 Black-Box Separations

This paper uses a novel approach in order to obtain black-box separations in
the concrete setting. The approach applies to all notions of reductions defined
in this paper, but we illustrate it in the context of FPRed reductions. In order
to disprove the existence of a fully-BB reduction within a certain class of re-
ductions, for every reduction B of interest, we have to prove the existence of a
Π ′-candidate f and an adversary A such that AdvΠ

SR[f ](A
R) is large, but the

advantage AdvΠ′

f (Bf,A(·)

) is small. We will achieve this by first showing the
existence of a randomized Π ′-candidate F and an adversary AP with private
random coins P (i.e. not controllable by B) such that AdvΠ

SR[F ](A
f,R
p ) is large

for all values p of the random coins P and for all (fixed) primitives f obtained

by fixing the coins of F , but AdvΠ′

F (BF,A
(F,·)
P ) is small for all reductions B of

interest. Because of the linearity of the advantage measures, we have

AdvΠ′

F (BF,A
(F,·)
P ) = Ep,f

[

AdvΠ′

f (Bf,A(f,·)
p )

]

,

where the expected value is taken over the choice of the private coins p and
the primitive f realized by F (with the corresponding probability distributions,
which may in the general case even be correlated). Therefore, for all reductions B

of interest, there must exist some particular f and some adversary A′(·) := A
(f,·)
p

without private coins such that AdvΠ′

f (Bf,A′(·)

) ≤ AdvΠ′

F (BF,A
(F,·)
P ) is small, too.

Hence, such a statement (for randomized primitives) also implies the inexistence
of a reduction working universally for all primitives: in particular, there is no
need to apply well-known classical asymptotic (and uniform) de-randomization
techniques based on the Borel-Cantelli lemma. To the best of our knowledge,
this approach is novel to this paper.

3 The Weakly Programmable ROM

In the previous section programmability (or the lack thereof) is captured by
considering a restricted set of reductions; from the point of view of the adversary
being employed by the reduction, nothing has changed. In this section we take an



subroutine Rρ
hon(X):

if T[X] 6= ⊥ then ret T[X]

r ←$ Coins ; z ← ρ(r)

T[X] ← z ; R[X] ← r

ret T[X]

subroutine Rρ
adv(X):

if T[X] 6= ⊥ then ret T[X], R[X]

r ←$ Coins ; z ← ρ(r)

T[X] ← z ; R[X] ← r

ret T[X], R[X]

Fig. 2. The weakly-programmable random oracle ideal primitive Rρ for
ρ : Coins → Rng. Initially T[X] = ⊥ for all X.

alternative approach, modifying the random oracle itself rather than restricting
the reduction.

Consider a random oracle as a mapping from Dom to Rng , where Rng is
finite and non-empty. Since we model ideal primitives by stateful and proba-
bilistic interactive Turing machines we can imagine the random oracle as be-
ing implemented via so-called lazy sampling: whenever a new query X ∈ Dom

appears, the random oracle returns a random value z ←$ Rng and stores the
pair (X, z) for further use. We now restrict the way the random oracle’s an-
swers z are determined. Namely, we parameterize the random oracle by a func-
tion ρ : Coins → Rng for a finite, non-empty set Coins. Each time the random
oracle receives a new query X it picks r ←$ Coins at random and returns z = ρ(r)
and stores X together with r.

Now, recall that an ideal primitive can have multiple interfaces. In what
follows, we consider two: an honest interface for use by honest parties and pro-
tocols; and an adversarial interface. Loosely, the latter will give the adversary
an ability to “validate” that the random oracle is behaving properly. Formally,
we give the following definition of a (ρ-restricted) weakly programmable random
oracle.

Definition 2 (WPRO). For a function ρ : Coins → Rng the ideal primitive
Rρ = (Rρ

hon, R
ρ
adv) described in Figure 2 is called a ρ-WPRO (or simply WPRO

if ρ is implicitly clear).

Notice that the honest interface of this object returns the range point z associ-
ated with the queried input. The adversarial interface returns both that range
point and the random value r used to generate z.

At this point we have not imposed any restriction on ρ. For example, if ρ
is the identity function (and Rng = Coins) then the resulting ideal primitive is
equivalent to a normal random oracle. On the other end of the spectrum, if ρ is a
constant function then it is clear that Rρ would not model an ideal cryptographic
hash function. Thus we establish what it means for a function ρ to be good.

Definition 3 (Good ρ). A function ρ : Coins → Rng is called good for Rng

if and only if: (1) Coins is finite, (2) |Rng | divides |Coins| and (3) ρ is regular,
i.e. for all y ∈ Rng we have

|{r ∈ Coins : ρ(r) = y}| =
|Coins|

|Rng |
.



Clearly any good ρ is such that, when evaluated on a uniformly chosen domain
point, one gets a uniform range point. (And conversely, if a uniform distribution
on the domain of ρ induces a uniform distribution on the range, ρ is good.) Said
another way, a random oracle R : Dom → Rng and WPRO Rρ

hon (with matching
domain and range) are information-theoretically indistinguishable if and only if
ρ is good for Rng .

It is easy to see that various kinds of functions ρ will limit a reduction’s
ability to program. For the scenarios we consider, the crucial property of ρ that
make the reductions—the proof of security—fail, is one-wayness of ρ (but stated
in the non-asymptotic setting via an upper bound on an algorithm’s inversion
probability). For any function ρ and owf-adversary A we define the owf advantage
as

Advowf
ρ (A) = Pr [ ρ(r) = ρ(r′) : r ←$ Coins ; r′ ←$ A(ρ(r)) ]

where a owf-adversary A is a probabilistic algorithm that takes as input a point
y ∈ Rng and outputs a domain point x ∈ Coins.

One-wayness of ρ ensures non-programmability in the following sense: Con-
sider for example a security reduction like the traditional one for FDH. This
reduction receives a random image y under a trapdoor permutation and, at
some point, injects this value as the hash value in a black-box simulation for
an allegedly successful adversary. But since the adversary can access the Rρ

adv

interface, the reduction would also need to provide a preimage of y under ρ,
violating the one-wayness of ρ.

Reductions in the WPRO Model. One can straightforwardly define a WPRO
model (WPROM) by analogy to the ROM (all honest parties have access to Rhon,
adversarial parties have access to Radv), and the notion of a black-box reduction
naturally extends to this model. In particular, we consider a strong notion of
reduction that allows any good function ρ, regardless of whether ρ is efficiently
computable or not.

Definition 4 (WPROM Reduction). A (Π → Π ′, δ, t, qρ, qF , qA)-fully-BB
WPROM security reduction for S is an oracle machine B(·,·,·) with the prop-
erty that for all Π-adversaries A(·), all good functions ρ for Rng, and all Π ′-
candidates f , if

AdvΠ

S
R

ρ
hon [f ]

(AR
ρ
adv ) > ǫ

for a ρ-WPRO Rρ = (Rρ
hon, R

ρ
adv) with range Rng and ǫ > 0, then

AdvΠ′

f (Bρ,f,A(·)

) > δ(ǫ, q, ℓ),

where q is the total number of queries A makes and ℓ is the overall length of
these queries. Furthermore, B runs in time t, makes qρ and qF queries to the
given ρ and f , respectively, and runs qA instantiations of A(·), where all three
quantities are functions of ǫ, q, and ℓ.

Since the reduction notion quantifies over all good ρ, a reduction must work
for one-way ρ. Indeed, it must also work for a ρ chosen randomly from the set



of all functions Coins → Rng . In this way reductions must avoid making use of
FDH-style programming: a reduction cannot inject a specific range point into
one of WPRO’s responses. As we will see in the next section, however, one can
take advantage of more limited programming techniques in the WPRO model.

Although all the WPROM reductions given in this paper are fully black-box
as per the definition above, we emphasize that the WPRO model is distinct from
the formulations in Section 2 in that one can give non-black-box reductions in
it.

4 Relationships among Types of Reductions

Having specified our reduction settings, we now establish the relationships among
them. We begin by stating the intuitive implications: a non-programming BB
reduction implies a randomly programming one, which in turn implies a fully
programmable reduction. The straightforward proofs are omitted. Let S = Sf,R

be a scheme relying on a cryptographic primitive f and a random oracle R :
Dom → Rng . Let Π and Π ′ be security properties which can possibly be satisfied
by S and f , respectively.

Proposition 1 (NPRed ⇒ RPRed). If there exists a non-programming
(Π → Π ′, δ, t, qF , qR, qA)-fully-BB ROM security reduction for S, then there
exists a randomly-programming (Π → Π ′, δ, t, qF , qR, 0, 0, qA)-fully-BB ROM
security reduction for S.

Proposition 2 (RPRed ⇒ FPRed). If there exists randomly-programming
(Π → Π ′, δ, t, qF , qev, qpr, qra, qA)-fully-BB ROM security reduction for S, then
there exists a fully-programming (Π → Π ′, δ, t′, qF , qA)-fully-BB ROM security
reduction for S, where9 t′ = t + O(q log q) for q = q · qA + qev + qpr + qra.

Next we show that schemes are secure in the WPRO model via a black-
box reduction if and only if there is a randomly-programming reduction. Hence,
restricting the random oracle in the WPRO sense, and restricting the reduction’s
abilities to program a full-fledged random oracle, are equivalent in a black-box
sense. The first result, in particular, exploits the fact that a fully-BB reduction
in the WPROM must also work for a randomly chosen (regular) function ρ.

Proposition 3 (WPROM Red ⇒ RPRed). If a (Π → Π ′, δ, t, qρ, qF , qA)-
fully-BB WPROM security reduction for S exists, then a randomly-programming
(Π → Π ′, δ′, t′, qF , q · qA, q · qA, qρ + q · qA, qA)-fully-BB ROM security reduction

for S exists, where δ′ = δ −
(qA·q+qρ)2

2|Dom| and t′ = t + O(q · ℓ).

Proposition 4 (RPRed ⇒ WPROM Red). If there exists a randomly-
programming (Π → Π ′, δ, t, qF , qev, qpr, qra, qA)-fully-BB ROM security reduc-
tion for S, then a (Π → Π ′, δ, t′, qF , q′ρ, qA)-fully-BB WPROM security reduction
for S exists with t′ = t+O((q · qA · log(q · qA) · ℓ) and q′ρ = q · qA + qev + qpr + qA.

9 The extra overhead O(q log q) is due to the simulation of the RPRO in the reduction.



WPROs are not ROs, but WPROM and ROM are equivalent. Below
we will confirm the expected implication that being a WPRO is actually a weaker
requirement than being a full-fledged RO. Yet existentially WPROs and ROs are
equivalent, i.e. we can efficiently construct a RO out of a WPRO.

For these comparisons we adopt the indifferentiability framework of Maurer,
Renner and Holenstein [12] to reason about primitives being close to random
oracles. We denote by Advind-R

C,H,S(D) the advantage any distinguisher D has
in distinguishing between a construction C with component H, and an ideal
primitive “R” (with an intermediary simulator S). We denote by the superscripts
“RO” and “WPRO” in the advantage the fact that the ideal primitive “R” is a
random oracle or a WPRO.

First, we derive a WPRO that is not a RO, i.e. it is easily differentiable
from a random oracle. This serves to show that in general WPROs and ROs
are separated. Consider the composition CH

ρ (x) = ρ(H(x)) of a random oracle
H : Dom → Coins and a regular one-way function ρ : Coins → Rng . In this
case, any simulator S would have to invert ρ for a sound simulation.

Proposition 5 (WPRO 6⇒ RO). For any function ρ that is good for Rng, for
the construction CH

ρ (x) = ρ(H(x)) there exists a simulator SWPRO
ρ such that

Advind-WPRO,ρ

Cρ,H,SWPRO(D) = 0

for any distinguisher D, but where there exists a distinguisher DRO such that for
any simulator S,

Advind-RO
Cρ,H,S(DRO) ≥ 1 − Advowf

ρ (S).

Despite this generic separation, it is possible to build a (fully programmable)
random oracle out of a WPRO, essentially building RO outputs one bit at a
time. Specifically, for x ∈ {0, 1}∗ let x|i denote the ith bit of x. Given a function
H : {0, 1}∗ → {0, 1}ℓ for some ℓ > 1 we consider the construction CH : {0, 1}∗ →
{0, 1}m such that

CH(x) = H(x‖〈1〉)|1 ‖ H(x‖〈2〉)|1 ‖ · · · ‖ H(x‖〈m〉)|1,

where ‖ denotes concatenation of strings and 〈i〉 is the (suffix-free) binary en-
coding of an integer i. Note that the construction calls H altogether m times
to achieve output length m; one can improve the efficiency by outputting more
bits in each iteration at the cost of tightness in the reduction. Furthermore, due
to the suffix-freeness of 〈·〉 one can always decide if a given string is of the form
x‖〈i〉 for some i ∈ N.

Theorem 1 (WPROM ⇔ ROM). For all good functions ρ, all integers τ >
0, and a WPRO Rρ = (Rρ

adv , Rρ
hon) : {0, 1}∗ → {0, 1}ℓ there exists a simulator

Sρ,τ such that for all distinguishers D issuing at most q queries to each oracle
we have

Advind-RO
C,Rρ,Sρ,τ

(D) ≤ q · 2−τ



where the simulator Sρ,τ invokes R at most once on each query and has running
time O(τ · (Timeρ +TimeCoins)), where Timeρ and TimeCoins are the times needed
to compute ρ and to sample a random element from Coins, respectively.

5 Trapdoor-Permutation-Based Key-Encapsulation

5.1 TDP-KEM Security in the WPROM

A key-encapsulation mechanism (KEM) is a triple of algorithms denoted KEM =
(Key,Encap,Decap) that operate as follows. The probabilistic key-generation al-
gorithm returns a key-pair (pk, sk); we write (pk, sk) ←$ Key. The (key) encap-
sulation algorithm Encap is a probabilistic algorithm that takes pk as input and
returns a key-ciphertext pair (K,C) where K ∈ K for some non-empty set K.
The (key) decapsulation algorithm takes as input a pair (sk, C) and determinis-
tically outputs a key K ∈ K or the distinguished symbol ⊥ to denote invalidity
of (sk, C). For proper operation, we require that for all pairs (pk, sk) generated
by Key, if (K,C) ←$ Encap(pk) then K ← Decap(sk, C).

Let KEM = (Key,Encap,Decap) be a KEM, K be a non-empty set, and A be
a KEM adversary. The security of KEM, in the WPRO model of hash function R
with underlying function ρ, against an adversary A is defined by the following
experiment:

Expkem-cca
KEM,R,ρ(A)

(pk, sk) ←$ Key; b ←$ {0, 1};
b′ ←$ ADecap(sk,·),Rρ

adv
(·),Encap(pk,b,·)(pk)

if b′ = b then return 1 else 0

The Decap(sk, ·) oracle performs the decapsulation algorithm upon its in-
put and returns the result. The Encap(pk, b, ·) oracle takes as input a distin-
guished symbol Run, picks K0 ←$ K, runs the encapsulation algorithm to pro-
duce (K1, C) ←$ Encap(pk), and returns the challenge (Kb, C). The encapsu-
lation oracle can be queried only once by the adversary. We then define the
KEM-CCA advantage of adversary A in breaking the KEM scheme via a chosen-
ciphertext attack as Advkem-cca

KEM,R,ρ(A) = Pr[Expkem-cca
KEM,R,ρ(A) = 1] − 1/2, where A

is forbidden to ask the challenge ciphertext C to its decapsulation oracle.

TDP-based KEMs in the WPRO Model. We recall that a trapdoor permu-
tation with domain Dom is a triple T P = (G,F, F ) of efficient algorithms such
that G returns a pair (pk, td), consisting of the public key and the trapdoor,
with the property that F (pk, ·) implements a permutation fpk : Dom → Dom,
whereas F (td, ·) implements its inverse f−1

pk (·). Consider key encapsulation mech-

anism TDP-KEMR[T P] = (Key,Encap,Decap) based on a TDP T P = (G,F, F )
with domain Dom and a WPRO Rρ : Dom → K for some underlying good func-
tion ρ mapping Coins to K, where K is some non-empty set. The key generation
algorithm is defined by Key = G, so it returns a pair (pk, td). The encapsulation
algorithm on input pk samples x ←$ Dom, sets K ← Rρ

hon(x) and C ← F (pk, x),



and returns (K,C). The decapsulation algorithm on input (td, C) computes
x ← F (td, C), sets K ←$ Rρ

hon(x) and returns K.
The KEM-CCA security of this scheme is tightly bound to the OWF security

of the underlying TDP. Our proof largely mirrors the one given by Shoup [15]
for RSA-KEM in the ROM.

Theorem 2 (WPROM Reduction for TDP-KEM). Let T P = (G,F, F ) be
a trapdoor permutation with domain Dom. Let TDP-KEMR[T P] = (Key,Encap,
Decap) be the TDP-based KEM described above. Let ρ be good for the non-empty
set K and let A be an adversary suitable for Expkem-cca

TDP-KEM,R,ρ(A) asking qD

queries to its decapsulation oracle, qR queries to the WPRO and running in
time t. Then there exists an adversary B = Bρ,F,A(·) such that

Advkem-cca
TDP-KEM,R,ρ(A) ≤ 2 · Advowf

T P(B) +
qD

|Dom|

where B uses a single instantiation of A(·), runs in time at most t + q log q ·
(TimeF + Timeρ + TimeCoins + TimeK) for q = qD + qR + 1 and TimeX denotes
the time to execute algorithm X or to sample from set X.

Here we give a very brief overview of the proof. The reduction is required
to invert the TDP on some challenge range point C∗, and it will embed this
challenge along with a random key K as the response (K,C∗) to the KEM-
adversary’s encapsulation query. Despite not having access to the trapdoor in-
formation, the reduction can answer decapsulation queries by (randomly) pro-
gramming the WPRO to ρ(r), where r is uniform. This simulation is correct, and
can easily be made consistent with WPRO queries, except in the case that Decap

is queried on the TDP challenge point C∗. This case accounts for the qD/|Dom|
term in the bound. Barring that case, the KEM-adversary wins its game only by
querying the WPRO on the preimage of C∗, in which case the reduction succeeds
to invert its challenge.

5.2 TDP-KEM is not Provable under Non-Programming Reductions

In the proof of Theorem 2, a weak form of programmability is needed to allow
for consistent simulation of the decapsulation oracle. Namely, the reduction may
need to return a random key K ∈ K for a decapsulation query C, because it
does not know the associated preimage r of C under F (pk, ·). Consequently, if
the adversary queries the random oracle with input r at a later point in time, its
output is programmed to K. This fact makes TDP-KEM amenable to an attempt
to entirely avoid programmability, e.g., by means of rewinding techniques. Yet,
any such approach is doomed to fail: we prove that TDP-KEM cannot be proven
secure with respect to non-programming fully-BB reductions, hence showing that
TDP-KEM is a scheme which necessarily requires a mild type of programmability.

This is summarized by the following theorem. Note that the result requires
qA ≤ 2q−1: For a small number of adversarial queries q a reduction may indeed
be feasible (e.g. using rewinding). Yet, for acceptable values of q the value 2q−1 is
too large for an efficient reduction to be allowed to issue more than 2q−1 queries.



Theorem 3 (Non-Programming Irreducibility for TDP-KEM).
Let TDP-KEMR[T P] = (Key,Encap,Decap) be the TDP-KEM scheme with key
space K, relying on a trapdoor permutation T P = (G,F, F ) with domain Dom

and public-key/trapdoor space {0, 1}k, as well as on a random oracle R : Dom →
K. Then, for all t, q > 0, all ǫ ≤ 1

2−
1
|K| , and all (kem-cca → owp, δ, t, (qG, qF , qF ),

qR, qA)-fully-BB non-programming reductions B for TDP-KEM, we have

δ(ǫ, q, q · log |Dom|) ≤
(qAq + 1) · (2qAq + qF + qR + 1)

|Dom|
+

qAq

|K|
+

qG + qF

2k

where qG, qF , qF , and qR are the number of queries of B to the respective oracles,
and qA ≤ 2q−1 is the number of adversarial instances run by B.

We provide a high-level description of the proof. We rely on an ideal trap-
door permutation T P = T PF = (G,F, F ) defined using the oracles F =
(Fτ ,FE ,FE−1): The oracle F initially chooses a keyed family of random per-
mutations E : {0, 1}k × Dom → Dom (in other words, E(pk, ·) is a random
permutation for all k-bit pk), as well as a random permutation τ that asso-
ciates to each k-bit trapdoor td a corresponding public key pk = τ(td). The
oracles Fτ and FE allow direct evaluation of τ and E, whereas the oracle FE−1 ,
on input (td, y) computes E−1(τ(td), y). The associated trapdoor permutation
T PF = (G,F, F ) is such that the generation algorithm GF chooses a random
uniform trapdoor td ←$ {0, 1}k, and sets the public key pk ← τ(td). Further-

more, the algorithms FF and F
F

simply call FE and FE−1 , respectively, with
their inputs, and return the corresponding output. Note that, even given the
public key pk, in order to be able to use FE−1 for inversion of F (pk, ·) we are
required to guess τ−1(pk) given only access to τ , which is of course infeasible
(at least without an extra oracle).

We show that there exists a deterministic adversary A making q queries
from Dom (and hence of length log |Dom| bits each) and accessing an oracle
O : {0, 1}∗ → Dom such that Advkem-cca

TDP-KEMR[T P],R(AO,T P,R) ≥ 1 − 1
|K| for all

T P and O, but whenever O is a random oracle and T P = T PF , then

Advowf
T P(BT P,R,AO,T P,Rpub

) ≤
(qAq + 1) · (2qAq + qF + qR + 1)

|Dom|
+

qAq

|K|
+

qG + qF

2k

for all reductions B as in the statement of the theorem, where in particular B can
run qA instances of A answering both its encapsulation and the decapsulation
queries. The statement of the theorem is obtained by derandomizing F and O
as described in Section 2.3.

Adversary Description. Ideally, we would like the (inefficient) adversary A
to be capable of determining whether it is being run in the actual kem-cca-
game, or whether it is being used by the reduction B in order to break the one-
wayness of the underlying trapdoor permutation T P. A naive approach consists
of letting A, on input the public key pk, choose a random r ←$ Dom and compute
C ← F (pk, r); the adversary subsequently asks C to the decapsulation oracle,



obtaining a value K. Finally, it issues a query r to the random oracle R, and
checks whether R(r) = K. In the affirmative case, it assumes that it is being
used in the actual kem-cca-game, and proceeds in breaking the scheme, e.g., by
inverting F (pk, ·) on the challenge ciphertext and guessing the bit b by making
an additional random oracle query. Otherwise, A just outputs a random guess.
Intuitively, since B is efficient, it cannot retrieve r given only C, and thus must
give some independent answer K ′ back to A’s decapsulation query, such that
A’s check will then fail.

This argument, however, has two major fallacies. First, the randomness of A
is determined by B, and thus r is chosen (and known) by B. Second, even provided
a way for A to issue a decapsulation query for a ciphertext C with preimage r
unknown to B, the reduction B can still first run A by giving a random answer
to the decapsulation query, up to the point where the random-oracle check fails,
and hence finding out r (as it is queried to Rpub). It subsequently rewinds A so
that the same query C is issued, for which now B knows the right answer R(r).
This allows B to invert the underlying T P, by just giving the challenge output
y as the challenge ciphertext to A’s encapsulation query.

We overcome both these problems by using a random oracle O : {0, 1}∗ →
Dom and considering the following adversary A: On input the public key pk, it
asks a sequence of decapsulation queries C1, C2, . . . , Cℓ (for ℓ = q − 1), where
Ci is computed by applying the random oracle to pk, to C1, . . . , Ci−1, and to
the answers of the previous queries. (We assume that such inputs can injectively
be mapped into bit strings.) Then, it checks the correctness of the answers
Kℓ,Kℓ−1, . . . in reverse order (as above, it checks whether Ki = R(F−1(pk, Ci))),
but stops checking as soon as the first inconsistency is found. (This is crucial for
the analysis to go through.) Finally, it behaves as above depending on whether
all checks have been successful or not.

The main idea is that rewinding does not help when O is a random oracle,
since (provided some unlikely events do not occur) the best strategy for B to
build a run of an instance of A where the correctness check is always satisfied
requires exponentially many (in ℓ) executions of A. This is proven by showing
an interesting connection to a tree-based, purely combinatorial, game. This ap-
proach is similar to the schedule used by Canetti et al. [6] to prove a lower bound
on the round complexity of black-box concurrent zero-knowledge proofs.

6 FDH is not Provably Secure in the WPRO Model

In this section we consider the traditional full-domain hash signature scheme and
show that one cannot prove it secure under randomly-programming reductions
only.10 Hence, a stronger version of programmability is required. We carry out
our proof in the WPRO model and the result follows for randomly-programming
reductions by the equivalence.

10 In fact, we prove the slightly stronger statement that not even a ρ-dependent black-
box reduction in the WPRO model exists for any one-way good function ρ.



Full-Domain Hash. We briefly recall the FDH-signature scheme. The scheme
FDHH [T P] = (Kg,Sign,Ver) is based on a trapdoor permutation T P = (G,F, F ).
To sign a message M ∈ Msg one computes σ ← F (sk,H(M)) for hash function
H : Msg → Sig , and to verify one checks that F (pk, σ) = H(M), where (pk, sk)
are the keys generated through Kg. Below we consider a very weak unforgeability
notion for FDH (called wsig), where the adversary has to forge a signature for
a random message in a key-only attack. This strengthens our result as we show
that even WPROM reductions from wsig to the one-wayness of the trapdoor
permutation (owp) perform badly.

FDH Cannot be Secure in the WPROM. We have the following result,
which states that FDH cannot be proven secure (by a black-box security analysis)
in the WPROM.

Theorem 4 (WPROM Irreducibility of FDH). Let FDHR[T P] = (Kg,Sign,
Ver) be the FDH scheme with message space Msg and signature space Sig, re-
lying on a trapdoor permutation T P = (G,F, F ) with domain Sig and public-
key/trapdoor space {0, 1}k, as well as on a random oracle R : Msg → Sig. Then,
for all t > 0, all ǫ ≤ 1, and all (wsig → owp, δ, t, (qG, qF , qF ), qρ, qA)-fully-BB
WPROM security reductions B for FDH we have11

δ(ǫ) ≤
qG + qF

2k
+

qF + 2qA + qρ + 2

|Sig |
,

where qG, qF , qF , and qρ are the number of queries of B to G,F, F , and ρ, re-
spectively, whereas qA is the number of adversarial instances run by B.

The proof adopts a variant of the two-oracle separation technique by Hsiao
and Reyzin [11]. For F and the ideal (i.e. random) trapdoor permutation T PF =
(G,F, F ) defined as in the proof of Theorem 3, we define for all functions ρ, an

oracle B = BT PF

ρ such that T PF is one way relative to B as long as ρ is one
way, yet there exists an adversary AFDH forging an FDH-signature given access
to B on any given message, i.e. it breaks FDH in the strongest possible sense.

Roughly speaking, the oracle B allows inversion of F (pk, ·) on each output
y′ whenever a preimage r′ of y′ under ρ is exhibited: This allows inversion of
F (pk, ·) for any output of Rρ

adv , and hence arbitrary forgeries in the WPROM.
Yet, in the task of inverting F (pk, ·) on a random y, coming up with a valid
preimage of y under ρ is as hard as inverting ρ, and thus infeasible if ρ is one
way. Therefore, the oracle B is only used to invert F (pk, ·) for outputs other
than the random challenge, which does not help it to win the OWF game.
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